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dynamics simulations.
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Equilibrium

Viscous Force
The dimensionless force F(B4) exerted by sphere B on sphere A is
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Force equilibrium for particle A FPY 4 Zﬁg i) 0;
Moment equilibrium for particle A ng(iBA) + Erny Zﬁg FénA) — ()

Similar equations for particle B

Solutions

Normal component velocity
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Tangential component velocity
vg = (2 + s)cosin 207

with F' the dimensionless repulsive force and s the average distance between
particles edges, and
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We focus on simple extensional flow of a dense suspension in which the interaction between closely pairs of particles, with radius a, is governed by a lubrication force and by a short-range
repulsion force responsible for the variations in approaching and departing velocities. We employ force and moment equilibrium to determine normal and tangential velocities of a typical pair
of particles that are integrated into a flux condition incorporating a radial distribution. The problem is then governed by a differential equation that is solved by the method of characteristic
with a boundary condition applied to the radial distribution function that approaches unity at far distance. Trajectories are derived and compared with those obtained through Stokesian

Kinematics
In a pure shearing flow the average rate of deformation D has components D3 = — Doy = 7.
The relative motion of the center of particle B with respect to the center of particle A is
p(BA) — y dBA) 4 ) (BAFBA)

where v, = &, vy = 2af and s is the separation of the edges along the line of centers and
an over-dot indicates a derivative with respect to time. The relative velocity of their points
of near contact is, then,
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where w is the angular velocity of the sphere. The interaction of A with £ — 1 near
contacting neighbors n, other than B, is treated differently; the sphere n is assumed to
move relative to A with the average flow. Then, the relative velocity of centers of pair nA
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and the relative velocity of the points of near contact nA is
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Flux Condition
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Method of Characteristics
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Particles trajectories at closest proximity, area fraction » = 0.64

Numerical simulations
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Theoretical prediction: solid lines(F = 10~*), dashed lines (F' = 0)
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