Dense, Inclined Flow of Water and Spheres of Two Sizes over an Erodible Bed !/
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Outline a theory for dense, inclined shearing flows of a binary mixture of inelastic,
frictional spheres and water: include velocity correlations and viscous collisional
dissipation.

Phrase and solve a one-dimensional boundary-value problem for steady, fully-
developed, inclined flow of a mixture of spheres of two sizes over an erodible bed
between vertical sidewalls

Spheres of radii ra and rg, d = ra + rg mass
density p,, mixture concentration c.

Fluid of mass density pg, kinematic
viscosity vg.

Density ratio 0 = p,/pr, buoyant gravity
g=(1-1/o)g.
Dense flow: ¢ > 0.49.

Saturated: water depth equal to particle
depth.

Mixture Momentum Balance
Lengths dimensionless by d, velocity by (g§d)"?, stresses by ppgd, energy flux by

p,(8d)™.

Pure fluid pressure: P
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Average collisional particle pressure: p=c(p— P)
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Average fluid shear stress:
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Average collisional particle shear stress:

0=s"+c—2 lsin(1)+£D(U—u),
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Drag: D= [(3/10)’6 —u| +18/ R]/(l— 0)3'1 , Reynolds number: R =d(dg)"” /v,

Inelastic, frictional spheres with mean diameter d; particle restitution: e; particle
friction: p.

Incorporate friction in the particle restitution: e =e—(3/2)ue™ 3

Incorporate viscosity in the particle restitution: 4]

Reynolds number: R =d(gd)"* / v,; Stokes number: St=6T"*R/9

Viscous restitution: € = max[O,eu —6.96(1+¢ ) / St:|

Idealize the flow as one-dimensional with variation normal to the flow
Sidewall friction: p_; Cell width: W; Resistive force: 2|1 p/ W [°]

Assume that the transport coefficients become singular at a concentration c_ at

which particles first touch: ! ¢ =0.58+(0.636—0.58)e ™"

Particles
Retain only the terms in the kinetic theory that result from collisions:
p=2c(1+&)GT, G =5.69c 2047049
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Fluid
Assume that the fluid viscosity results from fluctuations that are correlated with the
particle fluctuations, and incorporate added mass: [
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In the preceding, U is uniform across the cell; because the fluid does not slip at the
walls,
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Particle Energy Balance
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Introduce a correlation length in place of particle diameter in the rate of dissipation. [
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Inthebed, q'+7=0 or w”—A*w =0, with A*= 2;/[

Boundary Conditions: Free surface
Assume that the pressure at the top of the collisional flow balances the weight of a
single layer of particles above it.

Aty=h: p=ccosd, s=0, qecw’ =0, S=0.

Boundary Conditions: Erodible bed
Assume that the surface of the bed is at the concentration at which the particles first

touch.
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Segregation
In general, with
or=(r, -r,)/1,, Sm=(m, —my)/(m, +my), and 2X=(n, —n,)/(n, +n,),
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Results
Equal numbers of large and small spheres, with ra/rs = 3/2.
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For spheres made of the same material, 20m — 30r = 0, and gravity influences

segregation only through its influence on the distribution of the granular
temperature. Segregation is driven by the temperature, and the large spheres
concentrate near the base.
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