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Outline a theory for dense, inclined shearing flows of a binary mixture of inelastic, 
frictional spheres and water: include velocity correlations and viscous collisional 
dissipation.  
Phrase and solve a one-dimensional boundary-value problem for steady, fully-
developed, inclined flow of a mixture of spheres of two sizes over an erodible bed 
between vertical sidewalls 
 

Spheres of radii rA and rB, d ≡ rA + rB mass 
density ρ! mixture concentration c. 

Fluid of mass density ρ", kinematic 
viscosity ν". 

Density ratio 𝜎 ≡ 	ρ!/ρ",  buoyant gravity 
g( ≡ (1 − 1/σ)g.     

Dense flow: c > 0.49.  

Saturated: water depth equal to particle 
depth. 

 
Mixture Momentum Balance 

Lengths dimensionless by d, velocity by  stresses by  energy flux by 

   
 

Pure fluid pressure:   

  

 
Average collisional particle pressure:   

     

 
Average fluid shear stress: 

   

 
Average collisional particle shear stress:  

 

 
Drag:    Reynolds number:  

 
Inelastic, frictional spheres with mean diameter d; particle restitution: e; particle 

friction: µ. 
 

Incorporate friction in the particle restitution:   [2, 3] 
 

Incorporate viscosity in the particle restitution: [4, 5] 
  Reynolds number:  Stokes number:   

Viscous restitution:  

 
Idealize the flow as one-dimensional with variation normal to the flow 

 Sidewall friction:   Cell width: W;  Resistive force: [6] 
 

Assume that the transport coefficients become singular at a concentration  at 
which particles first touch: [2]    

 
Particles 

Retain only the terms in the kinetic theory that result from collisions: 
   

 

         

 
Fluid 

Assume that the fluid viscosity results from fluctuations that are correlated with the 
particle fluctuations, and incorporate added mass: [7] 

 

 
 In the preceding, U is uniform across the cell; because the fluid does not slip at the 

walls, 

 and  

 
Particle Energy Balance 

  
 

         

 
Introduce a correlation length in place of particle diameter in the rate of dissipation. [8, 9] 

 

 

       [10] 

 

 Fluctuation velocity.     

 

In the bed,    or   with    

 
Boundary Conditions: Free surface 

Assume that the pressure at the top of the collisional flow balances the weight of a 
single layer of particles above it. 

 
        

 
Boundary Conditions: Erodible bed 

Assume that the surface of the bed is at the concentration at which the particles first 
touch. 

        

 
Segregation 

In general, with   
         and   
 

  

 
Steady, uniform, dense, with   

  

 
Results  

Equal numbers of large and small spheres, with rA/rB = 3/2.  
 
 

 
 

For spheres made of the same material,  and gravity influences 
segregation only through its influence on the distribution of the granular 

temperature. Segregation is driven by the temperature, and the large spheres 
concentrate near the base. 

 
[1] Jenkins & Larcher, Water 15, 2629 (2023); [2] Chialvo, et al., Phys. Rev. E 85 (2012);  
[3] Larcher & Jenkins, Phys. Fluids 25 (2013); [4] Barnocky & Davis, Phys. Fluids 31 (1988); 
[5] Berzi & Fraccarollo, Phys. Fluids 25 (2013); [6] Taberlet, et al., Phys. Rev. Lett. 91 (2003); 
[7] Berzi & Fraccarollo, Phys. Rev. Letts. 115, 2015; [8] Jenkins, Phys. Fluids 18 (2006);   
[9] Jenkins & Berzi, Gran. Matt. 12 (2010); [10] Berzi & Vescovi, Phys. Fluids 27 (2015). 
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5π1/2

p
T1/2

′u ≡ µp ′u

S = 1
σ
1+ 2c
2(1− c)

µp ′U

U ! 1
2
U S = 2 1

σ
1+ 2c
2(1− c)

µp ′U .

− ′q + s ′u − γ = 0

q = − 4M̂
π1/2

(1+ ε)GT1/2 ′T , M̂ = 1
2
+ 9π
8
(2ε −1)(1+ ε)
16− 7(1− ε)

, q = − 2M̂
π1/2

p
T1/2

′T

γ = 12
π1/2

1− ε2( )GT
3/2

L
= 6
π1/2

(1− ε) pT
1/2

L
,

L = f ′u
T1/2

= f 5π
1/2

4Ĵ
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Phrase and solve a one-dimensional boundary-value problem for steady, fully-developed, 
inclined flow of a mixture of spheres of two sizes over an erodible bed between vertical 

sidewalls. 
 

 Spheres of radii rA and rB,   mass density 
 

 

Fluid of mass density  kinematic viscosity    
 

Density ratio  buoyant gravity 
   

 

Dense flow: c > 0.49.  
 

Saturated: water depth equal to particle depth. 
 

 
 
 
 

 

d ≡ rA + rB,
ρs ,

ρf , νf .

σ ≡ ρp / ρf ,
ĝ ≡ (1−1/ σ)g.
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