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Introduction
Granular gases are assemblies of colliding macroscopic particles.
They differ from molecular gases as collisions are dissipative: energy input is 
required to maintain a gaseous state.
Granular gases are well-described by a thermal-like kinetic theory in
which the velocity fluctuations play the role of temperature.
Granular gases exist in a nonequilibrium steady state. 
Whether state variables (such as temperature) can be defined generically for 
non-equilibrium steady states remains an open question.

Set-up: horizontal air table.
Energy injection through a relatively uniform 
flow of air via a porous plate (sintered
bronze). 

Boundary: square metallic frame with side 
lengths of 40 cm

Experimental setup: Air table

Particles: collection of polystyrene discs
floating on the porous plate and interacting
mainly through binary collisions

Air flow

-System size: L=40 𝒄𝒎
-Disc diameter 𝒅 = 𝟏. 𝟖, 𝟐. 𝟒 & 𝟑. 𝟎 𝒄𝒎
- Disc thickness: 𝐖 = 𝟎. 𝟏 𝒄𝒎
-Number of particles: N (1-500)

-Surface concentration: 𝒏 =
𝑵

𝑳𝟐

-Area fraction: 𝑪 = 𝒏𝝅
𝒅

𝟐

𝟐

-Air speed (at center of the table)
𝒗𝒂𝒊𝒓 =𝟎. 𝟖 − 𝟐. 𝟎 𝒎. 𝒔−𝟏

Parameters

Generalized normal distribution:

𝑷(𝒗) =
𝜷

𝟐𝜶𝞒(
𝟏
𝜷

)
𝒆−(

𝒗
𝜶

)𝜷

With 𝜶 and 𝜷 two free parameters

Distribution of each velocity component 𝑣𝑥 and 𝑣𝑦 for low 

(3%) and higher (19%) area fraction. 
(𝒅 = 𝟏. 𝟖 𝒄𝒎 𝒗𝒂𝒊𝒓 = 𝟎. 𝟖 𝒎. 𝒔−𝟏)

Granular Temperature: 𝑻𝒈 =
𝒎 𝑽𝟐

𝟐

Granular temperature Tg

Velocity distribution

Collisions Conclusions and open issues
Conclusions:
-Velocity distribution obey Maxwell-Boltzmann.
-At fixed 𝒏, 𝑻𝒈 Independent of 𝒎. At fixed 𝐂, 𝑻𝒈 ∝  𝒎

Open issues:
-Energy exchange: identifying when a disc gains and loses energy
-Polydisperse granular gas: Velocity distribution, equipartition?

Distribution of the modulus of the particle velocity V for 
low (3%) and higher (19%) area fraction

(𝒅 = 𝟏. 𝟖 𝒄𝒎 , 𝒗𝒂𝒊𝒓 = 𝟎. 𝟖 𝒎. 𝒔−𝟏)

• 𝑻𝒈 decreases with increasing surface 

concentration 𝒏
This could  be explained by the fact that when
𝒏 increases the frequency of collision increases.

• When 𝒗𝒂𝒊𝒓 and 𝒏 are prescribed, 𝑻𝒈 is

independent of disc size (mass).

Stationary state: Does it depend on energy injection?
Velocity distribution: Gaussian or non-Gaussian velocity
distributions?
Molecular chaos: particle velocities are uncorrelated or

correlated?

Equipartition of energy: equally or nonequally partitioned
kinetic energy in mixtures of different particles?
Temperature: Can we define a granular temperature behaving 
like a true temperature?
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• If we prescribe 𝒗𝒂𝒊𝒓 and 𝑪,  Τ𝑻𝒈 𝒎 is 

independent of particle size.

(𝒗𝒂𝒊𝒓= 𝟎. 𝟖 𝒎. 𝒔−𝟏)

⇒ 𝑻𝒈 Is Independent of 𝒎 𝑻𝒈 ∝  𝑚 ⇒ 𝑽𝟐 Is independent of 𝒎
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(𝑣𝑎𝑖𝑟 = 0.8 𝑚. 𝑠−1)

Variation of normal restitution coefficient ത𝒆 of a particle with 𝑪

• Discontinuities in the evolution of kinetic energy reveal collisions 
• For 𝐶 > 25%, collisions are generally not independent.
• ҧ𝑒𝑝𝑝 does not vary much with 𝐶, collisions involving smaller discs tend 

to be more dissipative.
• ҧ𝑒𝑝𝑚 increases slightly with 𝐶 but does not depend on the disc size.

Time evolution of the velocity of a particle
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