Building Vocabulary in AP Precalculus & Advanced Algebra

David Hornbeck

Rockdale Magnet School for Science & Technology

October 18, 2024

Outline

2 Motivation

- 4 Lessons & Applications
 - Rates of Change
 - Inverse Functions
 - Log Rules

The Biggest Change

Motivation

Other Vocabulary Changes & Enhancements

Lessons & Applications

Rates of Change Inverse Functions Log Rules

Closing Thoughts

Raffle

Rather than saying "x and y" or even "x and f(x)"... say inputs and outputs.

Motivation for Changing Vocabulary

The Biggest Change

Motivation

Other Vocabulary Changes & Enhancements

Lessons & Applications

Rates of Change Inverse Functions Log Rules

Closing Thoughts

Raffle

Original Motivation

• The AP Precalculus Course and Exam Description is chock full of this new vocabulary - it seemed necessary to make the switch.

Motivation for Changing Vocabulary

The Biggest Change

Motivation

Other Vocabulary Changes & Enhancements

Lessons & Applications

Rates of Change Inverse Functions Log Rules

Closing Thoughts

Raffle

Original Motivation

• The AP Precalculus Course and Exam Description is chock full of this new vocabulary - it seemed necessary to make the switch.

Resulting Benefits

• Variables besides x and y (and functions besides f) do, much to our students' surprise, exist, and my students became much more comfortable with that fact.

Motivation for Changing Vocabulary

The Biggest Change

Motivation

Other Vocabulary Changes & Enhancements

Lessons & Applications

Rates of Change Inverse Functions Log Rules

Closing Thoughts

Raffle

Original Motivation

• The AP Precalculus Course and Exam Description is chock full of this new vocabulary - it seemed necessary to make the switch.

Resulting Benefits

- Variables besides x and y (and functions besides f) do, much to our students' surprise, exist, and my students became much more comfortable with that fact.
- Inputs and outputs give us a common language with which to discuss every single function in the course (and any course!). This especially helps with choosing function models; inverse, trigonometric, and polar functions; and as log and exponent rules. It's the gift that keeps on giving.

The Biggest Change

Motivation

_

_

Other Vocabulary Changes & Enhancements

Lessons & Applications

Rates of Change Inverse Functions Log Rules

Closing Thoughts

Raffle

Old	\mathbf{New}	Advantage
Stretch/Shrink	Dilate by a factor of	No more confusion!

The Biggest Change

Motivation

_

_

_

Other Vocabulary Changes & Enhancements

Lessons & Applications

Rates of Change Inverse Functions Log Rules

Closing Thoughts

Raffle

Old	\mathbf{New}	Advantage
Stretch/Shrink	Dilate by a factor of	No more confusion!
x goes to ∞ or $-\infty$	Inputs increase or decrease without bound	Discuss bounds, magnitude

The Biggest Change

Motivation

Other Vocabulary Changes & Enhancements

Lessons & Applications

Change Inverse Functions Log Rules

Closing Thoughts

Raffle

Old	New	Advantage
Stretch/Shrink	Dilate by a factor of	No more confusion!
x goes to ∞ or $-\infty$	Inputs increase or decrease without bound	Discuss bounds, magnitude
Peaks, valleys	Maxima, minima (extrema)	Precision, calculus prep

The Biggest Change

Motivation

Other Vocabulary Changes & Enhancements

Lessons & Applications Rates of Change Inverse

Log Rules

Closing Thoughts

Raffle

Old	New	Advantage
Stretch/Shrink	Dilate by a factor of	No more confusion!
x goes to ∞ or $-\infty$	Inputs increase or decrease without bound	Discuss bounds, magnitude
Peaks, valleys	Maxima, minima (extrema)	Precision, calculus prep
"sin is y "	Ratio of vert. displacement to dist. from origin	Physics, precision

The Biggest Change

Motivation

Other Vocabulary Changes & Enhancements

Lessons & Applications Rates of Change Inverse Functions

Closing Thoughts

Raffle

Old	New	Advantage
Stretch/Shrink	Dilate by a factor of	No more confusion!
x goes to ∞ or $-\infty$	Inputs increase or decrease without bound	Discuss bounds, magnitude
Peaks, valleys	Maxima, minima (extrema)	Precision, calculus prep
"sin is y "	Ratio of vert. displacement to dist. from origin	Physics, precision
<i>"y</i> ="	f(x) =, g(x) =,etc.	Functions!!

Common New Expressions

The Biggest Change

Motivation

Other Vocabulary Changes & Enhancements

Lessons & Applications

Rates of Change Inverse Functions Log Rules

Closing Thoughts

- Over consecutive/successive equal-length intervals of inputs/outputs...
- Increasing/decreasing at an/a increasing/decreasing rate
- Intersection of terminal ray of angle in standard position and circle centered at origin

Lessons and Applications of Vocabulary

The Biggest Change

Motivation

Other Vocabulary Changes & Enhancements

Lessons & Applications

Rates of Change Inverse Functions Log Rules

Closing Thoughts

Raffle

Let's look at a few ways we can utilize this vocabulary to our advantage in the classroom and help our students build their own mathematical communication skills.

The Biggest Change

Motivation

Other Vocabulary Changes & Enhancements

Lessons & Applications

Rates of Change

Inverse Functions Log Rules

Closing Thoughts

Function // $f(x)$			Rate of Change		Rate of Rate of Change				Concavity
Positive			Any			Any			Any
Negative			Any			Any			Any
Increasing	,	``	Positive			Any			Any
Decreasing	-	-	Negative			Any			Any
Any			Increasing	,	、	Positive	,	``	Up
Any			Decreasing	· ·	-	Negative	· ·	-	Down

The Biggest Change

Motivation

Other Vocabulary Changes & Enhancements

Lessons & Applications

Rates of Change

Inverse Functions Log Rules

Closing Thoughts

Raffle

EXAMPLE I: The function *f* is increasing with a graph that is concave down for all *x*. Outputs of *f* for select values of *x* are in the table.

x	1	2	3	4	5	6	Behavior	Behavior
f(x)	1	15	26	32	34	35	of <i>f</i> :	N/A
1st diff. (changes)	N/A						of ROC:	of ROC:
2nd diff. (changes in changes)	N/A	N/A					N/A	of ROROC:

(a) Fill in "increasing" in the first "Behavior" column in the f(x) row.

- (b) Compute the 1st differences. Then, in the first "Behavior" column, write either "Positive" or "Negative" in the "1st diff." row.
- (c) Look at how the first differences are changing. Write in either "increasing" or "decreasing" in the 2nd "Behavior" column in the "1st diff." row.
- (d) Compute the 2nd differences. Then, in the second "Behavior" column, write either "Positive" or "Negative" in the "2nd diff." row.

The Biggest Change

Motivation

Other Vocabulary Changes & Enhancements

Lessons & Applications

Rates of Change

Inverse Functions Log Rules

Closing Thoughts

Raffle

EXAMPLE 2: The function g is decreasing and its graph is concave up for all x. Outputs of g for select values of x are in the table.

x	1	2	3	4	5	6	Behavior	Behavior
f(x)							of <i>f</i> :	N/A
1st diff. (changes)	N/A						of ROC:	of ROC:
2nd diff. (changes in changes)	N/A	N/A					N/A	of ROROC:

Complete the table - you get to choose the outputs values so long as they agree with the description of g!

NOTES

- We never talk about the rate of change increasing or decreasing at an increasing or decreasing rate.
- It matters whether you say "the function" or "the rate of change." These are entirely different things!

PRACTICE CONTINUED

1. Consider the graph of f below. The graph of f has extrema at x = A and x = D and inflection points at x = B and x = C.

Other Vocabulary Changes & Enhancements

Lessons & Applications

Rates of Change

Inverse Functions Log Rules

Closing Thoughts

Raffle

(a) Use the table to fill in the following.

- i. For x > C, the graph of f is concave up, so the rate of change of f is _____
- ii. On the interval (B, 0), the graph is above the x-axis, so ______ is positive. However, as x increases on this interval, the output values decrease, so _______ is negative. The graph of f is concave up on this interval, though, so ______ is positive.
- iii. The function changes from positive to negative at the x-value/s
- iv. The rate of change of f changes from positive to negative at the x-value/s
- v. The rate of rate of change of f changes from positive to negative at the x-value/s
- vi. f goes from increasing to decreasing at the x-value/s _____
- vii. The rate of change of f goes from decreasing to increasing at the x-value/s
- (b) Describe how the rate of change is changing on the interval $0 \le x \le C$.

The Biggest Change

Motivation

Other Vocabulary Changes & Enhancements

Lessons & Applications

Rates of Change

Inverse Functions Log Rules

Closing Thoughts

Raffle

Correct each of the following incorrect statements about a generic function g by changing the underlined portion.
 (a) When g is increasing, the function is positive.

(b) When the graph of g is concave down, the rate of change of g is decreasing at a decreasing rate.

(c) If g is increasing, then the rate of rate of change is positive.

(d) When the rate of change changes from positive to negative, the graph of g has an inflection point.

(e) A local maximum occurs when the rate of change changes from increasing to decreasing.

(f) A local maximum occurs when the rate of change changes from increasing to decreasing.

(g) A local minimum occurs when the function changes from negative to positive.

(h) A local minimum occurs when the function changes from negative to positive.

(i) If the rate of change of a function is negative and increasing, then the graph of g is concave down.

(j) If the rate of change of a function is negative and increasing, then the graph of g is concave down.

In Topic 2.7, you investigated function composition. One function that came up was the *identity function* i(x) = x. This leads to a definition.

Definition. The **INVERSE** of a function f(x) is the function $f^{-1}(x)$ that

- Returns an output f(x) back to x, and
- satisfies f(f⁻¹(x)) = f⁻¹(f(x)) = x.

This can be visualized as follows.

When a function has an inverse (on a certain domain), it is called invertible.

Try using the definition of an inverse function to answer the following.

- 1. Given an invertible function f(x) with f(2) = 3, what is $f^{-1}(3)$?
- 2. The graph of the invertible function g contains the point (4, -7). What point must the graph of $g^{-1}(x)$ contain?
- 3. Because an inverse function $f^{-1}(x)$ is defined strictly by its "undoing" of outputs of f(x), we have a number of relationships that arise. Try completing the following.

Relationship 1	The inputs of $f(x)$ are the of $f^{-1}(x)$, and the outputs of $f(x)$ are the of $f^{-1}(x)$.
Relationship 2	The domain of $f(x)$ is the of $f^{-1}(x)$, and the range of $f(x)$ is the of $f^{-1}(x)$.*
Relationship 3	If a point (x, y) is on the graph of $f(x)$, then the point is on the graph of $f^{-1}(x)$.

The Biggest Change

Motivation

Other Vocabulary Changes & Enhancements

Lessons & Applications

Rates of Change

Inverse Functions Log Rules

Closing Thoughts

The Biggest Change

Motivation

Other Vocabulary Changes & Enhancements

Lessons & Applications

Rates of Change

Inverse Functions Log Rules

Closing Thoughts

Raffle

In Relationship 2, there was an asterisk. Let's investigate.

- 4. Consider $f(x) = x^2$.
 - (a) What is f(4)? How about f(-4)?
 - (b) Explain why you can't determine f^{-1} (16).
- 5. Try to generalize the result of the previous question below.

If a function *f* has ______ with the ______. then the inverse function ins't ______.

Problem 5 can be visualized graphically. Consider $f(x) = x^2$ below.

- 6. Visually, how can you see that multiple inputs have the same output?
- 7. This "problem" can be fixed with a *domain restriction*. What is the largest domain *x* that you could restrict *f*(*x*) to such that *no* two inputs would have the exact same output?

So, in general, functions may only be invertible on a specific domain: this is often called the *invertible domain*. In this case, we have to modify Relationship 2 to state that

The <u>INVERTIBLE DOMAIN</u> of f(x) is the range of $f^{-1}(x)$, and the range of f(x) on its invertible domain is the <u>DOMAIN</u> of $f^{-1}(x)$.

The Biggest Change

Motivation

Other Vocabulary Changes & Enhancements

Lessons & Applications

Rates of Change

Inverse Functions Log Rules

Closing Thoughts

Raffle

Now, you've looked at finding input-output pairs of an inverse function and even looked at when an inverse function exists (or doesn't). How do you actually *find* an inverse function, though? It comes down to Relationship 1. If y = f(x), then the inputs of f are x and the outputs are y; for an inverse function, these inputs and outputs simply swap places, meaning x becomes y and y becomes x (analytically, this appears as $f^{-1}(y) = x$ - see how x and y have "swapped places"?). Let's try an example.

Use the box at the right to answer the following.

8. Let
$$f(x) = \frac{3x-1}{5}$$
. First, replace $f(x)$ with y .

- 9. Now, swap x and y i.e., reverse the roles of the inputs and outputs.
- 10. Now, solve for *y*. This resulting *y* will actually be $f^{-1}(x)$.

Finding the inverse of $f(x) = \frac{3x - 1}{5}$

The Biggest Change

Motivation

Other Vocabulary Changes & Enhancements

Lessons & Applications

Rates of Change

Inverse Functions

Closing Thoughts

Raffle

This process will work in general. Now, what about the *graph* of $f^{-1}(x)$?

- 12. We have stated that, for an inverse function, the inputs and outputs are reversed. If you were to graph f(x) in the coordinate plane with x and y axes, how do you think you could graph $f^{-1}(x)$?
- 13. You have a separate piece of patty paper with the graph of $f(x) = \frac{3x-1}{5}$. To swap the *x* and *y*-axes, you can actually *fold* the *x*-axis onto the *y*-axis.
- 14. Take the patty paper and fold the *x*-axis onto the *y*-axis. Press down to make a nice crease. Then, thickly trace over the graph of f(x).
- 15. Unfold the paper. You should now see a new line graphed (where you drew) this line is the graph of $f^{-1}(x)$!
- 16. You should also see a line where your crease was made. What is the equation of this line?
- 17. Complete the following:

For an invertible function *f*, the graph of $f^{-1}(x)$ is simply the graph of *f* _____

The Biggest Change

Motivation

Other Vocabulary Changes & Enhancements

Lessons & Applications

Rates of Change Inverse Functions Log Rules

Closing Thoughts

The Biggest Change

Motivation

Other Vocabulary Changes & Enhancements

Lessons & Applications

Rates of Change Inverse Functions

Log Rules

Closing Thoughts

The Biggest Change

Motivation

Other Vocabulary Changes & Enhancements

Lessons & Applications

Rates of Change Inverse Functions

Closing Thoughts

The Biggest Change

Motivation

Other Vocabulary Changes & Enhancements

Lessons & Applications

Rates of Change Inverse Functions Log Rules

Closing Thoughts

Let
$$f(x) = b^x$$
. Then
 $f(x) \cdot f(y) = b^x \cdot b^y = b^{x+y} = f(x+y)$. Therefore...

The Biggest Change

Motivation

Other Vocabulary Changes & Enhancements

Lessons & Applications

Rates of Change Inverse Functions Log Rules

Closing Thoughts

Raffle

Let
$$f(x) = b^x$$
. Then
 $f(x) \cdot f(y) = b^x \cdot b^y = b^{x+y} = f(x+y)$. Therefore..

A product of outputs corresponds to a sum of inputs.

The Biggest Change

Motivation

Other Vocabulary Changes & Enhancements

Lessons & Applications

Rates of Change Inverse Functions Log Rules

Closing Thoughts

Raffle

Let
$$f(x) = b^x$$
. Then
 $f(x) \cdot f(y) = b^x \cdot b^y = b^{x+y} = f(x+y)$. Therefore..

A <u>product</u> of <u>outputs</u> corresponds to a <u>sum</u> of <u>inputs</u>. But $g(x) = \log_b x$ is the inverse of $f(x) = b^x$, meaning its inputs and outputs reverse roles. Therefore...

The Biggest Change

Motivation

Other Vocabulary Changes & Enhancements

Lessons & Applications

Rates of Change Inverse Functions Log Rules

Closing Thoughts

Raffle

Let $f(x) = b^x$. Then $f(x) \cdot f(y) = b^x \cdot b^y = b^{x+y} = f(x+y)$. Therefore...

A <u>product</u> of <u>outputs</u> corresponds to a <u>sum</u> of <u>inputs</u>.

But $g(x) = \log_b x$ is the inverse of $f(x) = b^x$, meaning its inputs and outputs reverse roles. Therefore...

A <u>product</u> of <u>inputs</u> corresponds to a <u>sum</u> of <u>outputs</u>. This means that...

The Biggest Change

Motivation

Other Vocabulary Changes & Enhancements

Lessons & Applications

Rates of Change Inverse Functions Log Rules

Closing Thoughts

Raffle

Let $f(x) = b^x$. Then $f(x) \cdot f(y) = b^x \cdot b^y = b^{x+y} = f(x+y)$. Therefore...

A <u>product</u> of <u>outputs</u> corresponds to a <u>sum</u> of <u>inputs</u>. But $g(x) = \log_b x$ is the inverse of $f(x) = b^x$, meaning its inputs and outputs reverse roles. Therefore...

A <u>product</u> of <u>inputs</u> corresponds to a <u>sum</u> of <u>outputs</u>. This means that...

 $g(x \cdot y) = g(x) + g(y)$

The Biggest Change

Motivation

Other Vocabulary Changes & Enhancements

Lessons & Applications

Rates of Change Inverse Functions Log Rules

Closing Thoughts

Raffle

Let $f(x) = b^x$. Then $f(x) \cdot f(y) = b^x \cdot b^y = b^{x+y} = f(x+y)$. Therefore...

A <u>product</u> of <u>outputs</u> corresponds to a <u>sum</u> of <u>inputs</u>. But $g(x) = \log_b x$ is the inverse of $f(x) = b^x$, meaning its inputs and outputs reverse roles. Therefore...

A <u>product</u> of <u>inputs</u> corresponds to a <u>sum</u> of <u>outputs</u>. This means that...

 $g(x \cdot y) = g(x) + g(y)$ $\log_b(xy) = \log_b x + \log_b y$

The Biggest Change

Motivation

Other Vocabulary Changes & Enhancements

Lessons & Applications

Rates of Change Inverse Functions Log Rules

Closing Thoughts

Raffle

Let $f(x) = b^x$. Then $(f(x))^n = (b^x)^n = b^{xn} = f(xn)$. Therefore, exponentiation of an <u>output</u> equals a dilation of an input.

Reversing inputs and outputs yields...

The Biggest Change

Motivation

Other Vocabulary Changes & Enhancements

Lessons & Applications

Rates of Change Inverse Functions Log Rules

Closing Thoughts

Raffle

Let $f(x) = b^x$. Then $(f(x))^n = (b^x)^n = b^{xn} = f(xn)$. Therefore, exponentiation of an <u>output</u> equals a dilation of an input.

Reversing inputs and outputs yields...

exponentiation of an <u>input</u> equals a dilation of the <u>output</u>, or

The Biggest Change

Motivation

Other Vocabulary Changes & Enhancements

Lessons & Applications

Rates of Change Inverse Functions Log Rules

Closing Thoughts

Raffle

Let $f(x) = b^x$. Then $(f(x))^n = (b^x)^n = b^{xn} = f(xn)$. Therefore, exponentiation of an <u>output</u> equals a dilation of an input.

Reversing inputs and outputs yields...

exponentiation of an \underline{input} equals a dilation of the \underline{output} , or

 $\log_b(x^n) = n \cdot \log_b x$

Closing Thoughts

- The Biggest Change
- Motivation
- Other Vocabulary Changes & Enhancements
- Lessons & Applications
- Rates of Change Inverse Functions Log Rules
- Closing Thoughts
- Raffle

• Precision in vocabulary is important: the more you model it for your students, the more they'll pick up on it.

Closing Thoughts

- The Biggest Change
- Motivation
- Other Vocabulary Changes & Enhancements
- Lessons & Applications
- Rates of Change Inverse Functions Log Rules
- Closing Thoughts
- Raffle

- Precision in vocabulary is important: the more you model it for your students, the more they'll pick up on it.
 - "Don't knock it 'til you try it."

Closing Thoughts

- The Biggest Change
- Motivation
- Other Vocabulary Changes & Enhancements
- Lessons & Applications
- Rates of Change Inverse Functions Log Rules
- Closing Thoughts
- Raffle

- Precision in vocabulary is important: the more you model it for your students, the more they'll pick up on it.
- "Don't knock it 'til you try it."
- AP Precalculus spirals beautifully and effectively if you start with precise vocabulary early, it will pay dividends in the long run.

Raffle

The Biggest Change

Motivation

Other Vocabulary Changes & Enhancements

Lessons & Applications

Rates of Change Inverse Functions Log Rules

Closing Thoughts

Raffle

Book Giveaway!

Feedback // Thank You!

The Biggest Change

Motivation

Other Vocabulary Changes & Enhancements

Lessons & Applications

Rates of Change Inverse Functions Log Rules

Closing Thoughts

Raffle

Please fill out the feedback form at http://bit.ly/2024GMCsessions or scan the QR code below.

All lessons provided here are available in a Google folder at https://shorturl.at/bpmm9
or scan the QR code below.

E-mail: <u>dhornbeck@rockdale.k12.ga.us</u> Website: <u>davidhornbeck.com</u>