
   

 

   

 

Unity Versatile Third Person-

Advanced-Locomotion-Controller 

System Documentation 

Table of Contents 

• Introduction 

• Installation 

• Getting Started 

• Dependencies 

• Scene Setup 

• Data Management with Scriptable object 

➢ Player Configuration 

➢ Player Constants Configuration 

➢ Player Layer Mask Configuration 

➢ Player Rigid Body Configuration 

➢ Player Movement Configuration 

➢ Player Jump Fall Configuration 

➢ Player Ground Configuration 

➢ Player Collider Configuration 

➢ Player Cover Configuration 

➢ Player Climb Configuration 

➢ Player Parkour Configuration 

➢ Player Interaction Configuration 

➢ Player Roll Configuration 

➢ Player Ray Configuration 

➢ Player Health Configuration 

➢ Player Stamina Configuration 

➢ Player Aim Lock Configuration 

➢ Player Physic Material Configuration 

• Third-Person System Components 

o Player Movement Context 

o Player Movement Instances 

o Player State Manager 

o Player Enums 

o Player Movement Base State 

➢ Idle State 

➢ Walk State 

➢ Jog State 

➢ Run State 

➢ Jump State 

➢ Fall State 

➢ Crouch State 
➢ Crawl State 

➢ Cover State 



   

 

   

 

➢ Enter Climb State 

➢ Climb State 

➢ Exit Climb State 

➢ Parkour State 

➢ Roll State 

➢ Aim Lock State 

➢ Interact State 

➢ Death State 

o Player Controller Manager 

➢ Player Controller 

➢ Player UI Controller 

o Input Action Key Manager 

➢ Input Action Manager 

➢ Movement Input Handler 

➢ Menu Input Handler 

o Player Interfaces 

➢ I-Player State 

➢ I-Input Command 

o Camera System Manager 

➢ Free Roam Camera 

➢ Aim Lock Camera 

➢ Crawl Camera 

o IK Base System 

➢ Player Hand IK System 

➢ Player Foot IK System 

o Interactable Base System 

➢ Door 

➢ Elevator 

➢ Cover 

➢ Climb 

➢ Parkour 

o Health Base System 

➢ Player Health (Take Damage – Heal) 

o Stamina Base System 

➢ Player Stamina (Consume Stamina – Recharge Stamina) 

o UI Base System 

➢ Health UI 

➢ Stamina UI 

➢ Pause Menu UI 

➢ Controls Wizard 

o Interfaces 

➢ I-Health-State 

➢ I-Stamina-State 

➢ I-Interactable-State 

• Enhanced Gameplay Mechanics 

o Camera System. 

o Basic Movement + Roll Mechanic. 

o Cover System (2 different action). 

o Climb System (3 Different actions up to anything). 

o Interact System (Doors & Elevators). 
o Parkour System (3 different actions up to anything). 



   

 

   

 

o Dedicated Scripts for Interactable objects. 

o Unified Interaction Script. 

o Health & Stamina System. 

o Hand IK interaction mechanic. 

o Dynamic Collider. 

o Foot IK Handles Steep Slopes and Uneven Terrain 

• Usage Examples 

o Character Configuration Setup 

o Player Input Setup 

o Player Animator Setup 
o Rig Builder Setup 

o Player Collider Setup 

o Player Rigid Body Setup 

o Player Controller Setup 

o Player Hand IK Setup 

o Player Foot IK Setup 

o Player Health Setup 

o Player Stamina Setup 

o Player Controller UI Setup 

o Plauer Menu UI Setup 

o Door Setup 

o Elevator Setup 

o Cover Object Setup 

o Climb Object Setup 

o Parkour Object Setup 

• Troubleshooting 

• FAQs 

• Support 

1. Introduction 

Welcome to the Unity Versatile Third Person Advanced Locomotion Controller System 

documentation! This asset offers a comprehensive suite of tools designed to elevate your Unity 

projects. Whether you’re developing a game or simulation, this controller goes beyond essential 

functionalities, providing advanced features like the Parkour System, Climb System, Dynamic Collider 

on Slopes, and a customizable Interaction System to streamline your development process and 

enhance player experience. 

2. Installation 

To install the Unity Versatile Third Person Advanced Locomotion Controller System, follow these 

steps: 

• Open your Unity project. 

• Go to the Unity Asset Store. 

• Search for "Unity Versatile Third Person Advanced Locomotion Controller System" and click 

on the asset. 



   

 

   

 

• Click the "Download" button. 

• Import the package into your Unity project. 

Compatibility 

Ensure your Unity version is compatible with this package and that Cinemachine, Input System, and 

Animation Rigging are updated to the latest versions. 

Unity Starter Assets and Pro Builder: are used solely in the demo scene for showcasing features. 

They are not required in production environments and can be omitted. 

3. Getting Started 

After installation, follow these steps to get started with the Unity Versatile Third Person Advanced 

Locomotion Controller System: 

• Add the Player Controller Component to the Player Game Object. 

o After adding the Player Controller Component, components like Input Action 

Manager, Movement Input Handler, and others will be automatically added to the 

Player Game Object, simplifying the setup process. 

• Add the Input Action Manager Component to the Player Game Object. 

• Add the Movement Input Handler Component to the Player Game Object. 

• Add the Menu Input Handler Component to the Player Game Object. 

• Add Capsule Collider to the Player Game Object. 

• Add Rigid Body to the Player Game Object. 

• Add Animator to the player game object. 

• Add Rig Builder to the player game object. 

• Add Player Health to the game object. 

• Add Player Stamina to the player game object. 

• Add Player Controller UI to the player game object. 

• Add Player Hand IK System to the player game object. 

• Add Player Foot IK System to the player game object. 

4. Dependencies 

The package relies on the following Unity packages: 

• Cinemachine. 

• Input System. 

• Animation Rigging. 

• Unity Starter Assets Third Person: for the demo scene only. 

• Pro Builder: for the demo scene only. 



   

 

   

 

5. Scene Setup 

To set up the Versatile Third Person Advanced Locomotion Controller in a new scene, you need to 

accomplish some simple steps 

1. Layers: add the following Layers:  
a. Ground 

b. Interactable 

c. Player 

2. Tags: add the following tags: 
a. MainCamera 

b. Player 

c. CinemachineTarget 

6. Data Management with Scriptable Object 

Scriptable Objects in Unity are a powerful tool to manage character-specific data and configurations 

in an organized and reusable manner. This section covers the various configuration scripts provided 

in the package and guides you on creating their corresponding assets in the Unity Editor. 

Creating Scriptable Object Assets 

Each configuration script can be created as a Scriptable Object asset by right-clicking in the Project 

Window and navigating to the specified menu paths, such as Create > Character > [Config Type]. 

Character Configuration Scripts 

1. Character Config Script 

Consolidates all character-related settings into a single asset. 
a) Use: Centralized character behavior management. 

b) Create: Create > Character > Character Config. 

 

2. Rigid Body Config Script 

Holds physics-based settings for the character's Rigid-Body component. 

a) Use: Define mass, drag, and angular drag. 

b) Create: Create > Character > Rigid-Body Config. 

 

3. Movement Config Script 

Defines movement parameters like speed and acceleration. 

a) Use: Customize character movement styles and dynamics. 

b) Create: Create > Character > Movement Config. 

 

4. Ground Config Script 

Manages settings related to the character’s interaction with the ground. 



   

 

   

 

a) Use: Ground detection and handling. 

b) Create: Create > Character > Ground Config. 

 

5. Jump Fall Config Script 

Configures jump and fall behavior, including gravity and terminal velocity. 

a) Use: Fine-tune jumping and falling dynamics. 

b) Create: Create > Character > Jump Fall Config. 

 

6. Aim Lock Config Script 

Contains aiming-related settings for both free aim and strafe mechanics. 

Settings Include: 

a) Aim look weight speed. 

b) Strafe walk thresholds. 

c) Create: Create > Character > Aim Lock Config. 

 

Advanced Movement and State Configurations 

1. Climb Config Script 

Settings for climb behavior, including speed thresholds and timeouts. 

a) Create: Create > Character > Climb Config. 

 
2. Cover Config Script 

Handles settings for cover mechanics, including looking and movement while in cover. 
a) Create: Create > Character > Cover Config. 

 

3.  Roll Config Script 
Controls roll animation speed and completion time. 

a) Create: Create > Character > Roll Config. 

 

4.  Parkour Object Config 
Configures dynamic parkour actions such as vaults, small jumps, and high jumps. 

a) Use: Includes animation curves and thresholds for precision control. 

b) Create: Create > Character > Parkour > Traversal Object. 

 

5. Collider Config Script 
Manages collider dimensions for different states (e.g., crouching, parkour, crawling, rolling). 

a) Use: Ensure proper collider adjustments during state transitions. 

b) Create: Create > Character > Collider Config. 

 

Utility Configurations 

 

1.  Ray Config Script 



   

 

   

 

Defines ray casting parameters for interaction (e.g., doors, covers). 

a) Create: Create > Character > Ray Config. 

 

2. Health Config Script 
Manages health settings, including maximum health and recovery rates. 

a) Create: Create > Character > Health Config. 

 

3. Stamina Config Script 
Holds stamina parameters like max stamina, drain rate, and recovery speed. 

a) Create: Create > Character > Stamina Config. 

 

4. Layer Mask Config Script 
Layer Mask Config Script 

a) Assigns and manages layer masks for interactions and physics. 

b) Create: Create > Character > Layer Mask Config. 

 

5. Constants Config Script 
Stores constant values for critical references like camera indices and ray origins. 

a) Create: Create > Character > Constants Config. 

 

6. Physic Config Script 
Specifies Physic Materials for handling diverse terrain interactions. 

a) Create: Create > Character > Physic Config. 

 

7. Interaction Config Script 
The Interaction Config class manages settings for interacting with objects, including 

interaction timeout and time for object interaction. 

a) Create: Create > Character > Interaction Config. 

 

Tips for Efficient Data Management 

• Centralization: The Character Config Script is your central point for managing all character 

settings. 

• Real-Time Tweaks: Test and adjust configurations using the Inspector window to fine-tune 

character behavior. 

• Reusability: Duplicate configuration assets to use across multiple characters. 

7. Third-Person Controller System Components 

The following scripts and components play a crucial role in managing the player's movement, states, 

and actions within the Unity Versatile Third Person Advanced Locomotion Controller System. They 

help streamline and optimize player behavior for smooth interactions and transitions across various 

game mechanics. 



   

 

   

 

Player Movement Context Script 

The Player Movement Context class acts as the central hub for managing the player's movement 

settings and contexts. It encapsulates all the necessary components and configurations required to 

control the player's movement in the game world. This script is responsible for maintaining context 

across various movement states, ensuring all relevant data is properly handled and accessible. 

• Purpose: Establishes a unified context for movement behavior across all states. 

• Role: Coordinates various components involved in player movement, ensuring consistency 

and efficiency. 

Player Movement Instances Script 

The Player Movement Instances class handles all possible states that the player can occupy during 

gameplay, including idle, walking, jumping, and more. This class ensures that each movement state 

is instantiated once and reused, which optimizes performance and prevents unnecessary object 

creation during gameplay. 

• Purpose: Manages movement state instances to improve performance by avoiding 

redundant object instantiation. 

• Role: Ensures that only a single instance of each movement state exists, thereby enhancing 

performance and memory usage. 

 

Player Enums Script 

The Player Enums class organizes various states, commands, and interaction types into 

Enums, helping streamline player behavior management. By using Enums, the script allows 

for cleaner, more efficient transitions between states and actions. 

Summary of Enums: 

• Current-Movement-State: Defines different movement states (e.g., Idle, Walking, Jumping). 

• Current-Movement-Stage: Indicates the stages of a movement (Start, Active, End). 

• Movement-Command-Type: Lists the types of commands available (e.g., Move, Look, Jump). 

• Menu-Command-Type: Defines commands related to menus (e.g., Pause). 

• Cover-Type: Specifies types of cover (e.g., High-Cover, Low-Cover). 

• Climb-Object-Type: Denotes climbable object types (e.g., Ladder, Rope, Wall). 

• Interaction-Type: Categorizes interactable objects (e.g., Elevator, Door). 

• Parkour-Object-Action: Lists parkour actions (e.g., Vault, Jump-Over-Small-Object). 

• Parkour-Object-Animation: Defines animations related to parkour actions (e.g., Vault, Jump-

Over-High-Object). 

• IK-Limbs: Specifies limbs used during traversal (e.g., Right Hand, Left Foot). 

• Collider-Direction: Indicates directions for collider adjustments (e.g., X, Y, Z). 



   

 

   

 

Player State Manager Script 

The Player State Manager class is the backbone of state management, overseeing transitions 

between various movement states. It maintains the current player state and ensures smooth 

transitions based on the player's actions and context. The state manager is initialized with 

predefined movement instances and is responsible for processing state transitions efficiently. 

Key Features: 

• Initialization: The manager initializes with the player movement instances and sets the initial 

state to idle, ensuring the player starts in a default, stable state. 

• State Transition: It processes and facilitates state changes based on real-time conditions, 

such as moving from idle to walking, or from walking to jumping. 

• Error Handling: The state manager logs errors if the player instances or the current state are 

null, ensuring smooth debugging and preventing unexpected issues during gameplay. 

Player Movement Base State Script 

The `Player Movement Base State` class serves as the base state for all player movement states. It 

handles common logic for managing player input, movement, and state transitions. By implementing 

the `I-Player-State` interface, it ensures consistent state management. 

Key Features: 

• State Management: Tracks and manages the current movement state, stage, and next state. 

• Events: Defines delegates and events for state changes, allowing for responsive state 

management. 

• Transition Handling: Manages transitions between different movement states to ensure 

smooth gameplay. 

• Camera Management: Handles the camera system by managing mouse position and 

following the player. 

• Ground, Jump, and Fall Logic: Includes methods for checking if the player is grounded, 

falling, or jumping, adjusting related parameters and physics accordingly. 

• Movement Handling: Orchestrates player's movement, setting target speeds, handling input 

direction, adjusting speed, managing rotation, and setting Rigid-body movement. 

• State Checks: Provides methods to check various movement states such as walking, jogging, 

sprinting, crouching, crawling, strafing, and rolling. 

• Collider System: adapts the player's collider properties in real-time, ensuring optimal 

interaction with the environment. This system enhances realism and responsiveness, 

particularly in dynamically changing environments such as uneven terrains and varying 

slopes. 

• Animator Control: Manages animator parameters and root motion settings. 

• Rigid-body Control: Methods to enable or disable gravity in the Rigid-body component. 

• Input Control: Abstract method to disable input keys, customizable in derived classes. 

• IK Control: Methods to enable or disable the hand and foot IK systems. 

• Cover Logic: Checks if the player is in cover by ray-casting from the player's position and 

detecting interactable cover objects. 



   

 

   

 

• Climbing Logic: Manages climbing detection and direction, checking for climbable objects 

around the player and updating the climbing state accordingly. 

• Interaction Logic: Checks if the player is interacting with an object using sphere casting, 

detecting interactable objects like doors and elevators. 

• Parkour Logic: Checks if the player is vaulting over an object by sphere casting, detecting 

parkour objects. 

• Stamina Logic: Manages the player's stamina, including methods for draining and recharging 

stamina, and handling stamina depletion. 

• Health Logic: Manages health recovery over time and checks the player's health status, 

transitioning to the death state if health is zero. 

• Static Helper Methods: Includes helper methods for precise rotation adjustment and 

movement towards objects during interactions. 

• Visual Debug Methods: Includes methods to visualize different mechanics in the game. 

Player Idle State Script 

The `Player Idle State` class is part of a state machine that controls the player's idle state in the 

game. It Uses information for the player’s collider (Height, Center, and Direction). It also handles the 

transitions to all the other states. It also Recharge the stamina of the player. 

 

Player Walk State Script 

The `Player Walk State` class is part of a state machine that controls the player walking state in the 

game. It Uses information for the player’s collider (Height & Center). It also handles the transitions 

to all the other states. It also recharges the stamina of the player after a certain time and if the 

player is walking for a long time it will start to consume stamina. 

Player Jog State Script 

The `Player Jog State` class is part of a state machine that controls the player jogging state in the 

game. It Uses information for the player’s collider (Height & Center). It also handles the transitions 

to all the other states. It also consumes the stamina of the player after a certain time of start jogging. 

Player Sprint State Script 

The `Player Sprint State` class is part of a state machine that controls the player's sprinting state in 

the game. It Uses information for the player’s collider (Height & Center). It also handles the 

transitions to all the other states. It also consumes the stamina of the player after a certain time of 

start sprinting. 

Player Crouch State Script 

The `Player Crouch State` class is part of a state machine that controls the player's crouching state in 

the game. It Uses information for the player’s collider (Height & Center). It also handles the 

transitions to other states. It also recharges stamina after a certain time from entering the crouch 

state. 

Player Crawl State Script 



   

 

   

 

The `Player Crawl State` class is part of a state machine that controls the player's crawling state in 

the game. It Uses information for the player’s collider (Height, Center, and Direction). It also handles 

the transitions to other states. It also recharges stamina after a certain time from entering the crawl 

state. 

Player Interact State Script 

The `Player Interact State` class is part of a state machine that controls the player's interaction state 

in the game. This class handles situations when the player is in front of an interactable object, such 

as a door or elevator. It determines which hand should be used based on proximity to the handle or 

button of the object being interacted with, utilizing the hand IK system to ensure accurate and 

natural hand placement during interactions. 

Player Cover State Script 

The `Player Cover State` class is part of the state machine that controls the player's cover movement 

in the game. It Detects how the player will enter cover (High – Low). It uses information to 

determine the player’s collider’s height and center according to the height of the cover. 

Player Roll State Script 

The `Player Roll State` class is part of the state machine that controls the player roll state. It 

determines how the player will roll based on the input. It uses information to determine the player’s 

collider’s height and center while performing the roll action. 

Player Aim Lock State Script  

The `Player Aim Lock State` class is part of a state machine that controls the player's movement in 

the game. This specific state represents the player aiming and locking onto a target. It handles the 

animation, position adjustment, and state transition for when the player is aiming and locked onto a 

target. 

A. Add a new float variable for the walking threshold: This variable will determine the 

speed at which the player will walk. 

B. Initialize the walking threshold in the constructor: Use the movement-Context to 

initialize the walking threshold. This will allow you to set the walking speed in the game’s 

configuration. 

C. Add a new entry in the input-Speed-Map dictionary for the walking input: The input-

Speed-Map dictionary maps input actions to animation speeds. You’ll need to add a new 

entry for the walking input action and its corresponding animation speed. 

D. Update the Handle-Movement method to handle the walking input action: This could 

involve checking if the walking input action is triggered and then setting the target-

Speed to the walking threshold. 

E. Update the Set-Animation-Speed method to set the animation speed for the walking 

input action: This will ensure that the correct animation is played when the player is 

walking. 



   

 

   

 

Player Climb State Script 

The `Player Climb State` class is part of the state machine that controls the player's climbing 

movements in the game. It determines how the player will climb, using information based on ray 

casts to detect whether the player has reached the top or bottom of an object. The class initializes 

two rays: one from the eye, cast forward to detect upcoming steps, and another from the feet, cast 

downward to measure the distance between the player’s feet and the ground. This helps in 

dynamically adjusting the climbing animation and movement. 

Player Enter Climb State Script 

The `Player Enter Climb State` class is part of the state machine that controls the player's actions 

when beginning to climb an object. It casts two rays to determine the object's relative position to 

the player, ensuring accurate alignment and initiation of the climbing process. 

Player Exit Climb State Script 

The `Player Exit Climb State` class is part of the state machine that controls the player's actions 

when exiting a climb from the top of an object. It calculates the distance and force needed for the 

player to transition out of the climb smoothly, simulating the force in conjunction with the 

animation to provide a realistic climbing experience. 

Player Parkour State Script 

The `Player Parkour State` class is part of the state machine that controls the player’s parkour state. 

It determines how the player performs parkour actions over objects, utilizing parkour action 

animations, parkour action speed, and parkour action force to simulate various parkour behaviors. It 

also incorporates distance, height, and animation curves to fine-tune each parkour action for a more 

realistic and dynamic player experience. The class integrates with the hand and foot IK systems to 

ensure accurate and natural movements during parkour actions. 

Player Death State Script 

The `Player Death State` class is part of the state machine that controls the player when their health 

reaches zero. It handles the transition to the death state and disables all player functionalities, 

ensuring that the player can no longer perform any actions. It uses information for the player’s 

collider’s (Center & Direction). 

Player Controller Script 

The `Player Controller` class is the central component of the Unity Versatile Third-Person-Advanced-

Locomotion Controller System. It manages the player's movement and transitions between different 

movement states, ensuring smooth and responsive control. When you add the Player Controller 

script to a game object, it automatically includes all the required components: 

Key Features: 

1. Animator: Controls the animations of the player character based on input and state. 



   

 

   

 

2. Capsule Collider: Used for collision detection, creating an invisible capsule shape around the 

player that interacts with other colliders. 

3. Rigid-body: Allows the player to be affected by physics, including forces and collisions. 

4. Player Input: A built-in Unity component that manages player input, translating it into 

actions that the Player Controller can understand and respond to. 

5. Rig Builder: Part of Unity’s Animation Rigging package, responsible for managing and 

building the rig configuration for a character, enabling complex animations such as IK 

(Inverse Kinematics). 

Additional Features: 

• Initialization: Sets up references and initializes the player movement context and state 

manager. 

• State Updates: Continuously updates the player's state based on input for dynamic 

gameplay. 

• Component Management: Manages various components needed for player control, 

including input handlers, camera system, health and stamina systems, IK systems, and 

animation rigging. 

• Gizmos for Debugging: Draws Gizmos in the editor for visual debugging of ground, climb, 

and parkour states. 

• Animation and IK: Integrates animation rigging and IK systems for realistic player 

movements. 

• Character Configuration: Utilizes a character configuration to manage settings for various 

states. 

Player UI Controller Script 

The `Player UI Controller` class manages the UI elements related to the player's health and stamina. 

It updates the health and stamina bars and subscribes to relevant events to ensure the UI reflects 

the player's current state accurately. 

Key Features: 

• Health Management: Updates the health UI when the player's health changes, using the 

Player-Health component. 

• Stamina Management: Updates the stamina UI when the player's stamina changes, using 

the Player-Stamina component. 

• Event Subscription: Subscribes to the On-Health-Changed and On-Stamina-Changed events 

to receive updates on health and stamina changes. 

• Component Initialization: Initializes references to the player's health and stamina 

components and their corresponding UI elements. 

• UI Updates: Methods to update the health and stamina UI elements based on current and 

maximum values. 

Input Action Manager Script 

The `Input Action Manager` class is responsible for handling input from the player and storing the 

values for the player's movements and actions. Utilizing Unity's new Input System, this class maps 



   

 

   

 

movement and menu commands to their respective handlers, ensuring efficient input management. 

It initializes two main dictionaries: one for movement commands and one for menu commands, 

associating each command type with its corresponding input handler. 

Movement Input Handler Script 

The `Movement Input Handler` class handles the player's movement input. It implements the `I-

Input-Command` interface and provides methods for executing various movement commands. This 

class maps different types of player movement actions (such as walking, jumping, jogging, and more) 

to their corresponding input commands, ensuring that player inputs are accurately captured and 

processed in real-time. 

Menu Input Handler Script 

The `Menu Input Handler` class handles the player's menu input. It implements the `I-Input-

Command` interface and provides methods for executing menu commands and managing the pause 

input. This class captures and processes player inputs related to menu interactions, ensuring smooth 

and responsive menu navigation and controls. 

I Player State Script 

The `I-Player-State` interface defines the methods required for managing player states. It mandates 

the implementation of methods for entering, updating, and exiting a state, ensuring consistent state 

management and smooth transitions between different player behaviors. 

I Input Command Script 

The `I-Input-Command` interface defines a method for executing commands based on player input. 

It is designed to handle various player commands by associating input values with specific command 

types, enabling responsive and intuitive player control. 

Camera System Manager Script 

The `Camera System Manager` class handles the camera movement and virtual camera activation 

for the player. It manages the position of the mouse cursor in the game and can be used to add 

more camera systems to the game, ensuring a dynamic and responsive camera setup. 

Key Features: 

• Layer Masks: Configurable layer masks for aim point collision detection. 

• Camera Activation: Methods to activate specific virtual cameras and deactivate others. 

• Mouse Position Handling: Tracks and updates the aim point based on mouse cursor 

position. 

• Camera Rotation Management: Updates camera rotation based on player input, with 

clamping for vertical and horizontal angles. 

• Flexible Integration: Easily extendable to add more camera systems for varied gameplay 

scenarios. 



   

 

   

 

Player IK Base System Script 

The `Player IK Base System` class manages the behavior of the player's IK (Inverse Kinematics) 

system, enabling realistic interactions with objects in the game world. It allows the player to place 

their hands and feet on objects dynamically, supporting various actions such as interacting with 

doors and elevators, and setting IK targets for parkour actions using ray-cast data. 

Key Features: 

• Hand IK Targeting: Sets the IK targets for the player's hands, enabling precise hand 

placement during interactions. 

• Foot IK Targeting: Sets the IK targets for the player's feet, ensuring accurate foot placement 

on different terrains. 

• Parkour Limb Adjustment: Adjusts limb placement on parkour objects by calculating 

positions and rotations based on object size and orientation. 

Player Hand IK System Script 

The `Player Hand IK System` class manages the behavior of the player's hand IK (Inverse Kinematics) 

system. It allows the player to interact with objects in the game world by placing their hands 

accurately on these objects. Utilizing the IK system from the Animator, this class supports realistic 

hand placements for various interactions, such as with doors and elevators, and adjusts limb 

placement for parkour actions. 

Key Features: 

• Hand IK Targets: Sets IK targets for the player’s right and left hands, ensuring accurate hand 

placement. 

• Parkour Limb Adjustment: Adjusts hand positions based on parkour objects’ size and 

orientation. 

• IK Activation: Methods to enable or disable the IK system. 

• Reach Detection: Checks if the hand has reached the target position for precise interactions. 

Player Foot IK System Script 

The `Player Foot IK System` class manages the behavior of the player's foot IK (Inverse Kinematics) 

system. It ensures that the player’s feet are placed accurately on different terrains and parkour 

objects, providing realistic and dynamic foot movements. This class adjusts the foot positions and 

rotations based on the environment, enhancing the immersion and responsiveness of the player’s 

actions. 

Key Features: 

• Foot IK Targets: Sets IK targets for the player’s right and left feet, ensuring accurate foot 

placement. 

• Terrain Adjustment: Adjusts foot positions based on terrain height and angle using ray-cast 

data. 



   

 

   

 

• Parkour Limb Adjustment: Adjusts foot positions based on the size and orientation of 

parkour objects. 

• IK Activation: Methods to enable or disable the IK system for both feet. 

• Body Positioning: Adjusts the player's body position based on ground detection to maintain 

realistic posture. 

Interactable Base System Script 

The `Interactable Base System` class provides a foundational framework for all interactable systems 

in the game. It implements the `I-Interactable` interface, requiring an Interact method. This abstract 

class also includes methods for obtaining the interaction point and the size of the object, which must 

be implemented in any subclass. 

Key Features: 

• Interact Method: Abstract method to manage the object's behavior when interacted with. 

• Interaction Point: Abstract method to get the interaction point, used for setting hand IK 

targets during interactions. 

• Object Size: Abstract method to get the size of the object, providing information on its 

dimensions. 

Door Script 

The `Door` class manages the behavior of a door, allowing it to be opened and closed. It inherits 

from `Interactable-Base-System` and implements the `I-Interactable` interface. This class defines 

the interaction logic for doors, managing their rotations, open and close states, and interaction 

points. 

Key Features: 

• Interaction Type: Specifies the type of interaction for the door. 

• Interaction Logic: Handles the opening and closing of doors when interacted with. 

• Interaction Point: Retrieves the interaction point of the door, typically the handle. 

• Object Size: Provides the size of the door object, although in this implementation it returns 

zero. 

• Open and Close Mechanics: Manages the door's rotation to open and close it smoothly, 

including a delay before closing. 

Elevator Script 

The `Elevator` class manages the movement of an elevator, allowing it to alternately move up or 

down a specified distance when interacted with. The direction of the elevator's movement changes 

after each interaction. This class inherits from `Interactable-Base-System` and implements the `I-

Interactable` interface. 

Key Features: 

• Interaction Type: Specifies the type of interaction for the elevator. 



   

 

   

 

• Interaction Logic: Starts the elevator's movement when interacted with if it is not already 

moving. 

• Interaction Point: Retrieves the interaction point of the elevator, typically the position of the 

elevator button. 

• Object Size: Provides the size of the elevator object, although in this implementation it 

returns zero. 

• Movement Management: Uses a coroutine to move the elevator up or down a specified 

distance, alternating direction after each interaction. 

• Parenting Rigid-bodies: Sets the elevator as the parent of any Rigid-body that enters its 

trigger collider, ensuring the Rigid-body moves with the elevator and removes the parent 

when the Rigid-body exits. 

Climb Object Script 

The `Climb Object` class represents a climbable object in the game. It inherits from `Interactable-

Base-System` and implements the `I-Interactable` interface. This class defines the interaction logic 

for climbable objects, such as ladders or walls, and manages the interaction points and object size 

for accurate player interactions. 

Key Features: 

• Climb Object Type: Specifies the type of climbable object (e.g., Ladder, Rope, Wall). 

• Interaction Logic: Manages interaction with climbable objects. 

• Interaction Point: Retrieves the interaction point of the object, used for setting hand IK 

targets. 

• Object Size: Retrieves the size of the object, aiding in accurate interaction and animation. 

Cover Object Script 

The `Cover Object` class represents a cover object in the game. It inherits from Interactable Base 

System and implements the `I-Interactable` interface. This class defines the interaction logic for 

cover objects and manages the interaction points and object size for accurate player interactions. 

Key Features: 

• Cover Type: Specifies the type of cover the object provides (e.g., High Cover, Low Cover). 

• Interaction Logic: Manages interaction with cover objects, though they typically do not have 

interaction logic like doors or elevators. 

• Interaction Point: Retrieves the interaction point of the object, used for setting hand IK 

targets. 

• Object Size: Retrieves the size of the object, aiding in accurate interaction and animation. 

Parkour Object Script 

The `Parkour Object` class represents a parkour object in the game. It inherits from Interactable 

Base System and implements the `I-Interactable` interface. This class defines the interaction logic for 

parkour objects and manages the interaction points and object size for accurate player interactions. 



   

 

   

 

Key Features: 

• Parkour Action Type: Specifies the type of parkour action (e.g., Vault, Jump-Over-Small-

Object, Jump-Over-High-Object). 

• Interaction Logic: Parkour objects typically do not have interaction logic like doors or 

elevators, but this class provides the structure for potential interactions. 

• Interaction Point: Retrieves the interaction point of the parkour object, used for setting 

hand IK targets. 

• Object Size: Retrieves the size of the parkour object, aiding in accurate interaction and 

animation. 

• Closest Point Calculation: Returns the closest point on the object to the player, helping in 

precise positioning of the player's hands and feet. 

Health Base System Script 

The `Health Base System` class provides a foundation for all health systems in the game. It manages 

the health and destruction states of objects, implementing core functionalities such as taking 

damage, healing, and triggering events when health changes or objects are destroyed. 

Key Features: 

• Health Management: Abstract properties for getting and setting maximum and current 

health. 

• Initialization: Abstract method to initialize the health system with a specified maximum 

health value. 

• Damage and Healing: Abstract methods for applying damage and healing to the object. 

• Events: Delegates and events for health changes and object destruction, allowing other 

components to respond to these changes. 

• Event Invocation: Protected methods to invoke health change and destruction events, 

ensuring consistent event handling. 

Player Health Script 

The `Player Health` class manages the player's health, allowing the player to take damage and heal. 

It inherits from `Health-Base-System` and implements the `I-Health-State` interface. This class 

defines the core functionalities required to manage the player’s health, including initialization, taking 

damage, healing, and triggering health-related events. 

Key Features: 

• Health Configuration: Uses a Health-Config object to set health-related parameters. 

• Health Management: Abstract properties for getting and setting maximum and current 

health. 

• Initialization: Method to initialize the player's health at the start of the game. 

• Damage and Healing: Methods for applying damage and healing to the player, with 

corresponding event triggers. 

• Destroyed State: Manages a flag indicating whether the player is destroyed and triggers 

events when the player's health reaches zero. 



   

 

   

 

Stamina Base System Script 

The `Stamina Base System` class serves as a foundation for all stamina systems in the game. It 

manages the stamina levels of characters, allowing for the consumption and recovery of stamina. 

This abstract class also triggers events when stamina changes or is depleted, ensuring responsive 

and interactive stamina management. 

Key Features: 

• Stamina Management: Abstract properties for getting and setting maximum and current 

stamina. 

• Initialization: Abstract method to initialize the stamina system with a specified maximum 

stamina value. 

• Stamina Usage and Recovery: Abstract methods for using and recovering stamina. 

• Events: Delegates and events for stamina changes and depletion, allowing other 

components to respond to these changes. 

• Event Invocation: Protected methods to invoke stamina change and depletion events, 

ensuring consistent event handling. 

Player Stamina Script 

The `Player Stamina` class manages the player's stamina, allowing it to be used and recovered. It 

inherits from `Stamina-Base-System` and implements the `I-Stamina-State` interface. This class 

defines the core functionalities required to manage the player’s stamina, including initialization, 

consumption, recovery, and triggering stamina-related events. 

Key Features: 

• Stamina Configuration: Uses a Stamina-Config object to set stamina-related parameters. 

• Stamina Management: Abstract properties for getting and setting maximum and current 

stamina. 

• Initialization: Method to initialize the player's stamina at the start of the game. 

• Stamina Usage and Recovery: Methods for using and recovering stamina, with 

corresponding event triggers. 

• Drained State: Manages a flag indicating whether the player's stamina is drained and 

triggers events when the stamina is depleted. 

Player UI Base System Script 

The `Player UI Base System` class provides a foundational framework for all player UI systems. This 

abstract class defines methods for showing and hiding UI elements, as well as updating UI 

components based on player data. Subclasses must implement these methods to ensure consistent 

and interactive UI behavior. 

Key Features: 

• Visibility Management: Abstract methods for showing and hiding UI elements. 



   

 

   

 

• UI Updates: Abstract method for calculating and updating the UI element, ensuring real-

time feedback based on player data. 

• Visibility Flag: Protected flag indicating whether the UI is currently visible. 

Player Health UI Script 

The `Player Health UI` class manages the player's health UI, specifically updating the health bar with 

the player's current and maximum health values. It inherits from `Player-UI-Base-System` and 

defines methods for showing and hiding the health UI, as well as updating the health bar based on 

the player's health data. 

Key Features: 

• Health Management: Updates the health bar to reflect the player's current and maximum 

health. 

• Visibility Control: Methods for showing and hiding the health UI. 

• UI Updates: Calculates and updates the health bar’s fill amount to represent the player's 

health status accurately. 

• Health Data: Utilizes serialized fields to store the player's current and maximum health 

values. 

Player Stamina UI Script 

The `Player Stamina UI` class manages the player's stamina UI, specifically updating the stamina bar 

with the player's current and maximum stamina values. It inherits from `Player-UI-Base-System` and 

defines methods for showing and hiding the stamina UI, as well as updating the stamina bar based 

on the player's stamina data. 

Key Features: 

• Stamina Management: Updates the stamina bar to reflect the player's current and 

maximum stamina. 

• Visibility Control: Methods for showing and hiding the stamina UI. 

• UI Updates: Calculates and updates the stamina bar’s fill amount to represent the player's 

stamina status accurately. 

• Stamina Data: Utilizes serialized fields to store the player's current and maximum stamina 

values. 

Pause Menu System Script 

The Pause Menu System class manages the pause menu system, including showing and hiding the 

pause menu and controls wizard. It handles pausing and resuming the game, ensuring smooth 

transitions between gameplay and pause states. This class inherits from Player UI Base System and 

implements the core functionalities for managing the pause menu UI. 



   

 

   

 

Key Features: 

• Pause Management: Methods for showing and hiding the pause menu, pausing and 

resuming the game. 

• Controls Wizard: Methods for showing and hiding the controls wizard UI element. 

• UI Updates: Overridden method for updating the UI element, though not utilized in this 

implementation. 

• Toggle Functionality: Toggles the pause menu based on the pause input, ensuring 

responsive and intuitive menu management. 

• Game Exit: Static method to exit the game, with specific handling for the Unity editor. 

I Health State Interface 

The `I-Health-State` interface defines the properties and methods required for a health system in 

the game. It outlines the essential health-related functionalities that any class implementing this 

interface must provide, ensuring a consistent approach to managing health across different objects. 

Key Features: 

• Max Health: Property for getting and setting the maximum health of the object. 

• Current Health: Property for getting and setting the current health of the object. 

• Destroyed State: Property for checking if the object is destroyed. 

• Take Damage: Method for applying damage to the object, reducing its health. 

• Heal: Method for healing the object, increasing its health. 

I Stamina State Interface 

The `I-Stamina-State` interface defines the properties and methods required for a stamina system in 

the game. It outlines the essential functionalities that any class implementing this interface must 

provide, ensuring a consistent approach to managing stamina across different objects. 

Key Features: 

• Max Stamina: Property for getting and setting the maximum stamina of the object. 

• Current Stamina: Property for getting and setting the current stamina of the object. 

• Drained State: Property for checking if the object is drained of stamina. 

• Use Stamina: Method for consuming a specified amount of stamina. 

• Recover Stamina: Method for recovering a specified amount of stamina. 

I Interactable Interface 

The `I-Interactable` interface is used to define interactions with objects in the game. It requires 

implementing methods for interacting with objects, getting the interaction point, and obtaining the 

object's size. This interface ensures a consistent approach to handling interactive elements within 

the game. 



   

 

   

 

Key Features: 

• Interact: Method for defining the interaction logic when the object is engaged. 

• Get Interaction Point: Method for retrieving the interaction point of the object, typically 

used for setting IK targets. 

• Get Object Size: Method for obtaining the size of the object, aiding in accurate interaction 

and animation placement. 

8. Enhanced Gameplay Mechanics 

1. Dynamic Camera System 

a. Provides a flexible and adaptable camera setup that enhances gameplay by 

following the player and adjusting views based on the action. 

2. Basic Movement + Roll Mechanic + Aim Lock Mechanic 

a. Includes foundational player movements such as walking, crouching, crawling, 

jogging, sprinting, and jumping, along with aim lock mechanic and a roll mechanic 

for evasion and quick maneuvering. 

3. Cover System 

a. Allows players to take cover behind objects, enhancing strategy and realism in 

gameplay by providing protective and tactical advantages. 

4. Climb System 

a. Enables players to interact with and climb various objects, creating more dynamic 

and vertical gameplay opportunities. 

5. Parkour System 

a. Supports advanced movement techniques like vaulting and jumping over obstacles, 

making navigation more fluid and responsive. 

6. Interaction System (Doors & Elevators) 

a. Provides mechanisms for players to interact with environmental objects like doors 

and elevators, adding depth to the gameplay and enabling complex environment 

navigation. 

7. Dedicated Scripts for Interactable Objects 

a. Each type of interactable object, such as cover, climb, parkour, doors, and elevators, 

has its own dedicated script. This ensures specific and optimized behavior for each 

type of interaction, as defined in the Interactable Base System documentation. 

b. The Interaction System can be extended with new actions to suit specific gameplay 

needs in every system of the created ones 

8. Unified Interaction Script 

a. While each interactable object has a dedicated script for specific behaviors, the 

Interactable Base System provides a foundational framework for all interactable 

systems. All objects can interact with the player using this unified approach, 

eliminating the need for tags and simplifying the setup process. 

9. Health & Stamina Systems 

a. Manages player health and stamina, ensuring that players need to balance their 

actions and recovery times. Stamina is consumed during various actions and 

recharges over time, while health can be recovered gradually or through specific 

events. 

10. Dynamic Collider System 



   

 

   

 

The Dynamic Collider System is an advanced mechanism designed to adapt the player's 

collider properties in real-time, ensuring optimal interaction with the environment. 

Key Features: 

a. Automatic Adjustment: Modifies the collider's height, center, and direction based 

on the player’s current state and environmental context. 

b. Slope Adaptation: Utilizes the Adjust-Collider-For-Slope method to dynamically alter 

collider properties according to the slope angle. 

c. Environmental Adaptation: Through the Adjust-Collider-For-Environment method, 

the system adjusts collider properties based on calculated slope Normals. 

d. State-Based Configuration: Employs the Set-Collider-State-Properties method to 

apply specific collider settings corresponding to different player states. 

e. Physics Integration: Integrates with Unity’s physics engine to dynamically adjust 

physic materials. 

Benefits: 

f. Enhanced Realism: Continuous adaptation of collider properties ensures player 

movements are fluid and realistic across various terrains. 

g. Improved Performance: Automatic adjustments minimize the need for manual 

configuration, saving development time and enhancing game performance. 

h. Versatility: The system's ability to adapt to different states and environments makes 

it a versatile tool for developers. 

11. IK Foot & Hand Systems 

Hand IK System: 

a. Dynamic Adjustment: Adjusts hand positions in real-time to ensure accurate 

interaction with objects and environments. 

b. Smooth Transitions: Enhances the fluidity of hand movements, making actions like 

grabbing and climbing appear natural. 

Foot IK System: 

c. Environmental Interaction: Dynamically adjusts foot positions to match uneven 

terrain and slopes, providing realistic contact points. 

d. Improved Animation Quality: Ensures smooth and believable walking, and running 

animations by accurately placing feet on the ground. 

  



   

 

   

 

9. Usage Examples 

Character Configuration Setup 

To setup the character configuration, right click in the project window and selecting Create > 

Character > Character Config 

 

 

 

 

 

 

 

 

 

  



   

 

   

 

Movement Configuration Setup 

 

To setup the movement configuration, right click in the project window and selecting Create 

> Character > Movement Config 

 

 

 

 

 

 

 

 

  



   

 

   

 

Layer Mask Configuration Setup 

 

To setup the layer mask configuration, right click in the project window and selecting Create 

> Character > Layer Mask Config 

 

 

 

 

 

 

 

 

 

 

  



   

 

   

 

Player Rigid Body Configuration Setup 

To setup the layer mask configuration, right click in the project window and selecting Create 

> Character > Rigid-Body Config. 

 

 

 

 

 

 

 

 

  



   

 

   

 

Constants Configuration Setup 

 

To setup the constants configuration, right click in the project window and selecting Create 

> Character > Constants Config 

 

 

 

 

 

 

 

 

 

 

  



   

 

   

 

Ground Configuration Setup 

 

To setup the ground configuration, right click in the project window and selecting Create > 

Character > Ground Config 

 

 

 

 

 

 

  



   

 

   

 

Physic Configuration Setup 

 

To setup the physic configuration, right click in the project window and selecting Create > 

Character > Physic Config 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



   

 

   

 

Jump - Fall Configuration Setup 

To setup the jump-fall configuration, right click in the project window and selecting Create > 

Character > Jump-Fall Config 

 

 

 

 

 

 

 

 

  



   

 

   

 

Cover Configuration Setup 

 

To setup the cover configuration, right click in the project window and selecting Create > 

Character > Cover Config 

 

 

 

 

 

 

 

  



   

 

   

 

Climb Configuration Setup 

 

To setup the climb configuration, right click in the project window and selecting Create > 

Character > Climb Config 

 

 

 

 

 

 

 

 

 

  



   

 

   

 

Collider Configuration Setup 

To setup the collider configuration, right click in the project window and selecting Create > 

Character > Collider Config 

 

 

 

 

 

 

 

 

  



   

 

   

 

Aim Lock Configuration Setup 

 

To setup the aim lock configuration, right click in the project window and selecting Create > 

Character > Aim Lock Config 

 

 

 

 

 

 

 

 

 

 

  



   

 

   

 

Parkour Configuration Setup 

 

To setup the Parkour configuration, right click in the project window and selecting Create > 

Character > Parkour > Traversal Object 

 

 

 

 

 

 

 

 

 

 

  



   

 

   

 

Roll Configuration Setup 

 

To setup the roll configuration, right click in the project window and selecting Create > 

Character > Roll Config 

 

 

 

 

 

 

 

 

 

 

 

 

  



   

 

   

 

Ray Configuration Setup 

 

To setup the ray configuration, right click in the project window and selecting Create > 

Character > Ray Config 

 

 

 

 

 

 

 

 

 

 

 

  



   

 

   

 

Stamina Configuration Setup 

 

To setup the stamina configuration, right click in the project window and selecting Create > 

Character > Stamina Config 

 

 

 

 

 

 

 

 

 

 

  



   

 

   

 

Health Configuration Setup 

 

To setup the health configuration, right click in the project window and selecting Create > 

Character > Health Config 

 

 

 

 

 

 

 

 

 

 

  



   

 

   

 

Player Collider Component Setup 

 

To set up the player Collider component, add capsule collider component to the player 

game object, by default it will be added after adding the Player Controller script. 

 

 

 

 

  



   

 

   

 

Player Rigid-body Component Setup 

 

To set up the player rigid-body component, add rigid-body component to the player game 

object, by default it will be added after adding the Player Controller script. 

 

 

 

  



   

 

   

 

Player Input Component Setup 

 

To setup the Player Input Component, add the Player Input to the player game object, make 

sure you’ve installed the Input System Package, by default it will be added after adding the 

Player Controller script. 

 

 

 

  



   

 

   

 

Player Controller Script Setup 

 

To set up the player controller script, add player controller script to the player game object 

into your scene and it will add all the necessary components and scripts. 

 

 

 

 

 

  



   

 

   

 

Player Input Manager Scripts Setup 

 

To setup the Player Input Action Manager Scripts, add the `Input-Action-Manager`, 

`Movement-Input-Handler`, and `Menu-Input-Handler` to the player game object, make 

sure you’ve installed the Input System Package, by default it will be added after adding the 

Player Controller script. 

 

 

 

 

 

  



   

 

   

 

Animator Component Setup 

 

To setup the animator component, add the animator to the player game object, by default it 

will be added after adding the Player Controller script. 

 

 

 

Rig Builder Component Setup 

To setup the rig builder component, make sure you’ve installed the Animation Rigging 

package from the package manager, then add the Rig Builder component to the player game 

object, by default it will be added after adding the player controller script but make sure 

you’ve installed the Animation Rigging package. 

 

 

  



   

 

   

 

Player Hand IK Script Setup 

To setup the player hand IK system script, drag the player hand IK system to the player 

game object, by default it will be added automatically when added the player controller 

script. 

 

 

 

 

 

 

  



   

 

   

 

Player Foot IK Script Setup 

 

To setup the player foot IK system script, drag the player foot IK system to the player game 

object, by default it will be added automatically when added the player controller script. 

 

 

 

  



   

 

   

 

Player Health Script Setup 

 

To set up the player health script, drag the health configuration you’ve created and 

configured with the scriptable object then assigns it. 

 

 

 

 

 

 

 

  



   

 

   

 

Player Stamina Setup 

 

To set up the player stamina script, drag the stamina configuration you’ve created and 

assign it. 

 

 

 

 

 

Player UI Controller Setup 

To set up the player UI controller script, assign the script components to each field, and drag 

the UI of each one and assign to the appropriate field. 

 

 

 

 

 

 

  



   

 

   

 

Pause Menu System Setup 

To set up the pause menu system script component, follow the below instructions for each 

game object 

Add the Pause Menu System script to the player game object and assign the fields as shown 

below 

 

 

 

 

 

 

 

• Resume Game: This Game Object is associated with the button that resumes the 

game when clicked. When the game is paused, clicking this button will hide the 

pause menu and resume the game. 

 

 

  



   

 

   

 

• Controls Menu: This Game Object is linked to the button that opens the controls 

wizard. When clicked, it hides the pause menu and displays the controls wizard, 

allowing the player to view and modify the game controls. 

 

 

 

 

 

  



   

 

   

 

• Exit Game: This Game Object is tied to the button that exits the game. Clicking this 

button will close the game. If the game is running in the Unity editor, it will stop the 

play mode. If the game is running in a build, it will quit the application. 

 

 

 

 

 

 

  



   

 

   

 

• Close Window: This Game Object is connected to the button that closes the 

currently open window. It can be used to close the pause menu or the controls 

wizard, returning the player to the game. 

 

 

 

  



   

 

   

 

• Wizard: This Game Object represents the controls wizard itself. It is a UI element 

that displays the game controls to the player. It can be shown or hidden using the 

‘Show Controls’ and ‘Hide Controls’ methods, inside this game object there is a close 

window button. 

 

 

  



   

 

   

 

Camera System Manager Setup 

 

To set up the camera system manager script, assign the required fields as shown below 

 

 

 

  



   

 

   

 

Interaction System Setup 

To set up the different interaction objects in the environment assign each script to the 

corresponding objects 

 

Climb Object: 

 

 

 

 

 

 

  



   

 

   

 

High Cover Object: 

 

 

 

 

 

  



   

 

   

 

Low Cover Object: 

 

 

 

 

 

 

 

 

 

  



   

 

   

 

Vault Parkour Object: 

 

 

 

 

  



   

 

   

 

Small Parkour Object: 

 

 

 

 

  



   

 

   

 

High Parkour Object: 

 

 

 

 

 

  



   

 

   

 

10. Troubleshooting 

If you encounter issues, refer to the Usage Examples section in the documentation or 

visit our Support page for assistance. 

11. FAQs 

1. Q: Can I customize player movement states or add new states? 

A: Yes, the system is designed to be extensible. You can customize existing states or add 

new states by modifying the provided scripts and implementing your desired 

functionality. 

2. Q: What should I do if my player’s character animations are not playing 

correctly? 

A: Ensure you’ve unchecked the “Apply Root Motion” in the animator component, check 

for any warnings or errors in the console and verify the animations are properly 

triggered based on the player input and state transitions. 

3. Q: Can I add custom UI elements for the player’s health and stamina? 

A: Yes, you can customize the player UI element by modifying the provided prefabs that 
handle the UI under the canvas or create import your own. 

4. Q: How Can I implement additional camera systems or controls? 

A: The camera system manager script allows you to manage camera systems for the 

player, you can extend this functionality to add more camera systems based on your 

game requirements. 

5. Q: Can I use this asset with my existing AI solution? 

A: Yes, the core Health, Stamina and Interaction Base Systems are designed to be 

modular and can be easily integrated with your AI, providing a unified framework for 

character behavior. 

6. Q: Can a single object be used to perform multiple player mechanics, such as cover and 

vault actions? 

Yes, you can configure a single object to perform multiple player mechanics. To do this, 

change the input keys through the input action settings, and the changes will be 

automatically reflected in the code base. This allows for seamless interaction with objects, 

enabling various mechanics such as cover, vault, climb, and more. 



   

 

   

 

7. Q: What should I do if I encounter issues during setup or usage? 

A: If you encounter any issues, first refer to the "Troubleshooting" section in the 

documentation. If the problem persists, visit our Support page or contact us at 

support@truetacticalstudio.com for assistance. 

 

12. Support 

For technical support or inquiries, please feel free to reach out to us: 

• Email: support@truetacticalstudio.com 

• Visit our website: www.truetacticalstudio.com 

mailto:support@truetacticalstudio.com
mailto:support@truetacticalstudio.com
https://truetacticalstudio.com/

