
 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

1

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

2

Chapter 1: Understanding Python

Python is a very popular language to learn how to code. Do you know why? Because it's as easy
as reading a book! Seriously, its syntax (the way the code is written) is so simple and easy to
understand, that it feels like you're just reading a story. That's why it's perfect for beginners. In
this chapter, we're going to introduce you to the building blocks of Python so you can start
writing your own code. Get ready to become a Python wizard!

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

3

Python Syntax Basics

Indentation:
In Python, we have a unique way of organizing our code called "indentation". Instead of using
those curly braces that you might see in other programming languages, Python relies on
something called "consistent spacing". So, instead of using braces to group our statements
together, we simply use indentation!

Imagine you're writing a story, and you want to separate different paragraphs. In Python, you
do the same thing with your code. You use indentation (spaces or tabs) to show which

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

4

statements belong together in a certain block. It's like using proper spacing and formatting in a
book to make it easier to read and understand.

So, remember in Python, we don't need those curly braces; we create neat and organized code
by using consistent spacing and indentation. It's like giving your code a clear structure and
making it look super clean!

In this Python example, the def keyword is used to define a function called greet.
Inside this function, there are two statements:

• message = "Hello, " + name - This line creates a string by concatenating "Hello, " with
the name parameter.

• print(message) - This line prints the value of the message variable to the console.

If the indentation is not consistent, Python will raise an IndentationError.

Comments:
Comments are like little notes in your code that are extremely helpful in understanding what's
going on. In Python, creating comments is as simple as using the # symbol. Anything that comes
after the # on a line is completely ignored by the Python interpreter. So, you can freely write
notes to yourself or others, explaining what your code does, without worrying about it affecting
the actual execution.

Think of comments as the secret behind-the-scenes conversations that only you and fellow
coders can understand. You can write down your thoughts, explain tricky parts, or even leave
reminders for yourself. It's like having your code whispering sweet explanations in your ear!

With comments, you can make your code understandable and maintainable, sharing your
insights with others or simply helping your future self-decipher your genius logic.

def greet(name):
 if name:
 print (f"Hello, {name}!")
 else:
 print ("Hello, World!")

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

5

In this example:
The first comment (# This function greets a person with the provided name) explains the
purpose of the greet function.

The second comment (# Concatenate 'Hello' with the person's name) describes what the line
below it is doing, which is creating a greeting string.

The third comment (# Print the greeting to the console) explains that the print function will
output the greeting to the console.

The fourth comment (# Call the function with the name 'Lisha') tells the reader that the
function greet is being called with the argument 'Lisha'.

These comments are not executed as part of the program; they are there to help anyone

reading the code to understand what each part of the code is intended to do. This is particularly

helpful for more complex programs or when the code is being read by someone other than the

original author.

Variables:
In programming, we often need to store information that we want to use later. Imagine having
a magic box where you can keep things and take them out whenever you need them. Well, in
programming, we have something called a "variable" that works just like that!

Think of a variable as a labeled box that can hold different types of information, like numbers,
words, or even a whole bunch of data. And how do we put something in that box? We simply
use the equals sign (=) to assign a value to the variable.

Define a function greet that takes one parameter 'name'
def greet(name):
 # Check if the 'name' is not empty or None
 if name:
 # If 'name' has a value, print a personalized greeting with the provided name
 print(f"Hello, {name}!")
 else:
 # If 'name' is empty or None, print a generic greeting to the world
 print("Hello, World!")

Call the greet function with the argument "Lisha" to execute the greeting
greet("Lisha")

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

6

It's like giving a name to a box and putting something inside. For example, you can have a
variable called "favorite_number" and assign it the value 42. Then, whenever you want to use
or manipulate that number in your program, you can simply refer to it by its name,
"favorite_number".

Variables are super flexible and can be changed whenever you want. You can update the value
stored in a variable, like changing your favorite number from 42 to 99. It's like a magical box
that can transform!

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

7

So, in Python, we use the equals sign (=) to assign a value to a variable and create our own set
of magical boxes to hold and manipulate our information. Get ready to collect and play with all
sorts of data!

Imagine you have three boxes labeled age, name, and colors. Each box is used to store different
types of items:

In the age box, you put the number 30 because it's someone's age.
In the name box, you put the text "Lisha" because it's someone's name.
In the colors box, you put a list ["red", "green", "blue"] because these are favorite
colors.

Here's how that looks in Python code:

In this example, the = symbol is like placing an item into the box. The print function is like
opening the box and showing what's inside to someone. This allows us to store, retrieve, and
use data in various ways throughout a program.

Creating variables in Python

A box labeled 'age' where we store the number 30
age = 30

A box labeled 'name' where we put the text "Alice"
name = "Alice"

A box labeled 'colors' where we put a list of colors
colors = ["red", "green", "blue"]

Now we can use these boxes to retrieve the stored items
print("Age:", age) # This will print: Age: 30
print("Name:", name) # This will print: Name: Lisha
print("Colors:", colors) # This will print: Colors: ['red', 'green', 'blue']

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

8

Exploring Simple Data Types

Imagine you have different types of information, like words, numbers, and true/false
statements. Well, in Python, we have special data types to handle each of these!

Strings: Think of strings as a bunch of characters that you can put together. It can be anything –
words, sentences, or even just a single character. We put these characters inside quotes (' or ")
to tell Python that it's a string. For example, "Hello, World!" is a string.

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

9

Numbers: Numbers in Python come in different flavors. We have integers, which are whole
numbers without any decimals (like 5, 100, or -10). And then we have floating-point numbers,
which have decimals (like 3.14 or -2.5). Numbers are used for calculations, measurements, and
many other things in programming.

Booleans: When something can be either true or false, we use Booleans. It's like a switch that
can be on or off. For example, if it's daytime, the Boolean value is True. If it's nighttime, it's
False. Booleans are commonly used for making decisions in our programs, like "If it's raining,
take an umbrella."

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

10

These simple data types help us organize and work with data in a program. Strings let us
manipulate text, numbers help us with calculations, and Booleans allow us to make decisions
based on conditions. It's like having separate tools in our programming toolbox for different
tasks!

Basic Arithmetic Operations
Arithmetic is like a mathematical playground where we can play with numbers and perform
different operations on them.

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

11

In Python, we have a set of special symbols to represent these operations:

Addition (+): It's like combining numbers. When we use the plus symbol between two numbers,
Python adds them together. For example, 2 + 3 equals 5.

Subtraction (-): Think of subtraction as taking away. When we use the minus symbol, Python
subtracts the second number from the first. For example, 7 - 4 equals 3.

Multiplication (*): Multiplication is like making copies of numbers. When we use the asterisk
symbol, Python multiplies two numbers. For example, 2 * 4 equals 8.

Division (/): Division is like sharing or splitting things. When we use the slash symbol, Python
divides the first number by the second. For example, 10 / 2 equals 5.

Modulo (%): The modulo operation gives us the remainder left over after division. It's like
finding what's left from a division. When we use the percent symbol, Python calculates the
remainder. For example, 13 % 5 equals 3 because 13 divided by 5 leaves a remainder of 3.

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

12

These arithmetic operations allow us to perform calculations in our programs, just like a
calculator. We can add, subtract, multiply, divide, and even find remainders. It's like having a
whole set of math superpowers right at our fingertips in Python!

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

13

Let's look at some examples:

Addition: Summing two numbers
sum = 7 + 3
print(sum) # This will print the sum of 7 and 3, which is 10

Subtraction: Finding the difference between two numbers
difference = 7 - 3
print(difference) # This will print the difference between 7 and 3, which is 4

Multiplication: Multiplying two numbers
product = 7 * 3
print(product) # This will print the product of 7 and 3, which is 21

Division: Dividing one number by another
quotient = 7 / 3
print(quotient) # This will print the quotient of 7 divided by 3, which is a decimal number

Modulo: Finding the remainder of the division of two numbers
remainder = 7 % 3
print(remainder) # This will print the remainder of 7 divided by 3, which is 1

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

14

Basic String Operations

Concatenation: It's like combining strings together to create a longer string. In Python, we use
the plus (+) operator to concatenate strings. For example, if we have the strings "Hello" and
"World", by concatenating them, we get "HelloWorld".

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

15

Repetition: Just like how we can repeat a word or phrase multiple times, in Python, we can
repeat a string multiple time. We use the asterisk (*) operator to denote repetition. For
example, if we have the string "Hi" and repeat it three times, we get "HiHiHi".

Indexing: Each character in a string has a specific position called an index. We can access
individual characters in a string by using their index. In Python, indexing starts from 0. So, to get
the first character in a string, we use the index 0, and to get the second character, we use the
index 1, and so on. For example, if we have the string "Python" and we want to get the first

character, we can use string_name[0] and it will return "P".

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

16

Slicing: Slicing allows us to extract a portion of a string by specifying a range of indices. We use
the colon (:) symbol to indicate slicing. For example, if we have the string "Hello, World!" and

we want to extract just the word "World", we can use string_name[7:12] and it will return

"World".

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

17

These operations give us the ability to manipulate and work with strings in Python. We can
combine them, repeat them, access specific characters, and extract portions of them. It's like
having tools to manipulate words and sentences in our programming toolbox!

Here are some string operation examples:

As you begin your journey with Python, remember that practice is key to mastering these
concepts. Try writing your own Python code snippets with different data types and operations
to see firsthand how they work. In the next chapters, we'll build upon these basics and
introduce you to more complex and powerful aspects of the Python language.

Concatenation: Combining two strings together
greeting = "Hello, " + "world!"
print(greeting) # This will print the concatenated string "Hello, world!"

Repetition: Repeating a string multiple times
laugh = "ha" * 3
print(laugh) # This will print "ha" repeated 3 times, resulting in "hahaha"

Indexing: Accessing a character at a specific position in a string
alphabet = "abcdefghijklmnopqrstuvwxyz"
print(alphabet[0]) # This will print the first character of the string, which is "a"

Slicing: Extracting a substring from a string using a range of indices
print(alphabet[0:3]) # This will print the first three characters of the string, "abc"

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

18

Chapter 2: Python Building Blocks

Delving Deeper into Variables and Data Types

Variables are like storage boxes in programming. They hold data values that we want to use
later. In Python, when we assign a value to a variable, it is created automatically. Python is
flexible, so we don't need to say what type of data the variable will hold when we create it.
Python figures out the type based on the value we give it.

Examples of variable assignment:

Data types are important because they tell Python what kind of operations can be performed
on the given data. We've already touched upon simple data types like strings, numbers, and
Booleans in Chapter 1. Understanding these types is crucial as they are used frequently in
Python programs.

name = 'Lisha' #A string variable
age = 30 # An integer variable
height = 5.5 # A floating-point variable
is_student = True # A Boolean variable

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

19

Performing Basic Operations and Expressions
An operation in Python is like a special command that helps us do calculations. For example,
when you write 2 + 3, you're telling Python to add those two numbers together.

Expressions are like puzzles made up of numbers and operations. When Python sees an
expression like 2 + 3 * 4, it follows the same rules as in math. It multiplies before adding, so the
answer is 14.

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

20

But sometimes we want to change the order. Just like in math, we can use parentheses to tell
Python to do a certain calculation first. For example, (2 + 3) * 4 would give us 20, because we
add 2 and 3 first, then multiply by 4.

Examples of expressions:

result = 10 + 5 * 2 # Multiplication happens first, so result is 20.
print(result)

total = (10 + 5) * 2 # Parentheses change the order, so total is 30.
print(total)

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

21

Understanding and Creating Simple Functions
Functions in Python are like special tools that help you do specific tasks.

They are made up of reusable blocks of code that you can use repeatedly in your program.

To create a function in Python, you use the keyword "def" followed by the name of the function
and parentheses (). Inside the parentheses, you can put variables called parameters.
Parameters act as placeholders for the values you want to give to the function.

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

22

After the parentheses, you put a colon: to start the function's body. The function's body is the
part that contains the code that will be executed whenever you call the function. It's like a set
of instructions that Python will follow.

Example of a simple function:

In this example, greet is a function that takes one parameter, name, and returns a greeting
message.

Functions can be as simple or as complex as needed, and they're a powerful way to organize
and reuse code.

In this chapter, we've covered some of the fundamental building blocks of Python. You've
learned about variables, operations, expressions, and functions. As you become more
comfortable with these concepts, you'll be able to tackle more complex programming
challenges with confidence.

In the next chapter, we will explore how to control the flow of your Python programs using
conditional statements and loops. Stay tuned!

Define a function that greets a user
def greet(name):
 message = "Hello, " + name + "!"
 return message

Call the function and print the result
print(greet("Lisha")) # Output: Hello, Lisha!

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

23

Chapter 3: Control Structures

The Power of Conditional Statements
Making decisions is an important part of programming. In Python, you can make decisions using
conditional statements. These statements allow you to tell Python to do something specific if a
certain condition is true or false.

For example, you can tell Python to do one thing if a number is bigger than 10, and another
thing if it's not.
Conditional statements are like forks in the road that help you choose which path to take based
on the condition you set. They give you a lot of power to control how your program behaves.

The if Statement:
The if statement is the simplest form of a conditional. It checks a condition and executes the
associated block of code if the condition is true.

In this example, if age is greater than or equal to 18, Python prints "You are eligible to vote."

Define a variable 'age' and assign it the value 18
age = 18

Check if the 'age' is greater than or equal to 18
if age >= 18:
 # If 'age' is greater than or equal to 18, print the message below
 print("You are eligible to vote.")

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

24

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

25

The else and elif Statements:
You're right! In Python, the else statement is used after an if statement. If the condition in the if
statement is false, the code within the else block will be executed. It provides an alternate code
path when the condition is not met.

Additionally, the elif statement allows you to check multiple conditions, one by one, until one of
them evaluates to true. Once a condition is true, the corresponding block of code is executed,
and the rest of the elif statements and the else statement (if present) are skipped. This is
helpful for handling multiple possibilities and choosing the appropriate code block based on the
situation.

This code block checks the temperature and prints a message based on the value.

Define a variable 'temperature' and assign it the value 30
temperature = 30

Check if the 'temperature' is greater than 30
if temperature > 30:
 # If 'temperature' is greater than 30, print "It's a hot day."
 print("It's a hot day.")
If the previous condition is not met, check if 'temperature' is greater than 20
elif temperature > 20:
 # If 'temperature' is greater than 20 but not greater than 30, print "It's a nice day."
 print("It's a nice day.")
If none of the above conditions are met, execute the following block
else:
 # If 'temperature' is not greater than 30 or 20, print "It's cold outside."
 print("It's cold outside.")

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

26

Iterating with Loops
Loops are another fundamental control structure that allow you to repeat a block of code
multiple times.

Python provides several looping mechanisms, the most common being the for loop and the
while loop.

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

27

The for Loop:
In Python, the for loop is used to iterate over a sequence of items and perform a block of code
for each item in the sequence.

You can use a for loop to iterate over different types of sequences, such as lists, tuples,
dictionaries, sets, or even strings.

During each iteration of the loop, the code block is executed with a different item from the
sequence assigned to a variable. This allows you to perform operations or apply logic on each
item individually.

The for loop is a powerful tool for automating repetitive tasks and processing collections of
data in a systematic way.

Example:

In this example, the for loop iterates through the list fruits, and for each fruit, it prints a
message.

Define a list named 'fruits' containing three strings: "apple", "banana", and "cherry"
fruits = ["Blackberry", "Blueberry", "Strawberry"]

Start a 'for' loop to iterate through each item in the 'fruits' list
for fruit in fruits:
 # Print a message for each fruit using the 'fruit' variable
 print("I like", fruit)

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

28

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

29

The while Loop:
The while loop repeatedly executes a target statement if a given condition is true.

Example:

This loop will print the count variable if count is less than or equal to 5.

Initialize a variable 'count' with the value 1
count = 1

Start a 'while' loop that continues if 'count' is less than or equal to 5
while count <= 5:
 # Print the current value of 'count'
 print("Count:", count)

 # Increment the value of 'count' by 1 in each iteration
 count += 1

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

30

Practical Examples
Now let's apply what we've learned about conditional statements and loops with a practical
example.

Example: A Simple Number Guessing Game

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

31

 This simple game generates a random number and then enters a while loop, prompting the
user to guess the number. It uses if, elif, and else statements to provide feedback on the user's
guess. The loop continues until the user guesses correctly.

Control structures like conditional statements and loops are the backbone of Python
programming, allowing for dynamic and interactive programs. Experiment with these
structures, combining them with what you've learned in the previous chapters to solve
problems and automate tasks.

In the next chapter, we'll explore how to use these control structures to work with more
complex data types and collections in Python.

Import the 'random' module to generate random numbers
import random

Generate a random number between 1 and 10 and store it in 'secret_number'
secret_number = random.randint(1, 10)

Initialize the 'guess' variable to None
guess = None

Start a 'while' loop that continues until 'guess' matches 'secret_number'
while guess != secret_number:
 # Prompt the user to enter a number between 1 and 10 and store it in 'guess' after converting it to
an integer
 guess = int(input("Enter a number between 1 and 10: "))

 # Check if 'guess' is less than 'secret_number'
 if guess < secret_number:
 print("Too low, try again.")
 # Check if 'guess' is greater than 'secret_number'
 elif guess > secret_number:
 print("Too high, try again.")
 # If 'guess' matches 'secret_number', print a congratulatory message
 else:
 print("Congratulations! You guessed the right number.")

Print "Game over!" once the 'while' loop is exited
print("Game over!")

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

32

Chapter 4: Data Structures for Beginners

Exploring Lists
Lists are incredibly versatile data structures in Python. They are used to store a collection of
items in a specific order. Lists can contain elements of different types, such as numbers, strings,
or even other lists.

One key feature of lists is that they are mutable, meaning you can modify their content. You
can add, remove, or modify elements within a list. This makes lists a great choice when you
need a flexible and dynamic data structure.

Lists provide various built-in methods and operations that allow you to manipulate and access
their elements efficiently. They are widely used in Python programming and offer a lot of
flexibility for storing and managing data.

Creating and Accessing Lists:

Creating a list
favorites = ["Chips", "Chocolate", "Cake"]

Accessing list elements
print(favorites[0]) # Output: chip
print(favorites[1]) # Output: chocolate
print(favorites[-1]) # Output: cake (last element)

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

33

List Operations:
You can perform various operations on lists, such as adding and removing elements.

Adding an element to the end of a list
fruits.append("orange")

Inserting an element at a specific position
fruits.insert(1, "mango")

Removing an element
fruits.remove("banana")

print(fruits) # Output: ['apple', 'mango', 'cherry', 'orange']

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

34

Using Dictionaries

Dictionaries in Python are unordered collections used to store data values in key-value pairs.
Each key is unique within a dictionary, and it is used to access and retrieve the corresponding
value.

Dictionaries are highly efficient for retrieving data because they use a hashing mechanism to
map keys to their associated values. This allows for quick access even with many elements.

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

35

Dictionaries are particularly useful when you need to associate keys with specific values and
retrieve them based on those keys. This makes dictionaries a powerful data structure when
organizing and accessing data in a meaningful way.

In addition, dictionaries are mutable, so you can add, modify, or remove key-value pairs as
needed. They offer a lot of flexibility and are widely used in various programming tasks.

Creating and Using Dictionaries:

Understanding Tuples
Tuples in Python are like lists in that they can store multiple items. However, there is one key
difference: tuples are immutable, meaning their values cannot be changed once they are
created.

Once a tuple is created, you cannot add, remove, or modify its elements. This makes tuples
useful for storing data that should remain constant or should not be changed after creation. For
example, you might use tuples to store a collection of coordinates or constants that shouldn't
be modified.

Tuples can also be used as keys in dictionaries because of their immutability. On the other
hand, lists are mutable and cannot be used as dictionary keys.

While tuples lack some of the flexibility of lists, their immutability provides benefits such as
ensuring the integrity and stability of the data they hold.

Creating a dictionary
person = {"name": "Lisha", "age": 32, "city": "New York"}

Accessing dictionary values
print(person["name"]) # Output: Lisha

Adding a new key-value pair
person["job"] = "Engineer"

Removing a key-value pair
del person["age"]

print(person) # Output: {'name': 'Lisha', 'city': 'New York', 'job': 'Engineer'}

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

36

Creating and Accessing

Tuples:

Looping Through Data Structures
You can use for and while loops to iterate over data structures.

Looping Through a List:

Looping Through a Dictionary:

Creating a tuple
coordinates = (40.7128, -74.0060)

Accessing tuple elements
print(coordinates[0]) # Output: 40.7128
print(coordinates[1]) # Output: -74.0060

Assuming you have a list named 'fruits' containing fruit names
fruits = ["Blackberry", "Blueberry", "Strawberry"]

Use a 'for' loop to iterate through each fruit in the 'fruits' list
for fruit in fruits:
 # Print a message for each fruit using the 'fruit' variable
 print("I like", fruit)

Assuming you have a dictionary named 'person' with key-value pairs
person = {
 "name": "John",
 "age": 30,
 "city": "New York"
}

Use a 'for' loop to iterate through the key-value pairs in the 'person' dictionary
for key, value in person.items():
 # Print each key and its associated value
 print(key, "is", value)

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

37

Practical Examples:

Working with Data Structures
Let's combine these data structures with control structures in a practical example.

Example: Creating a Contact List

In this example, we define a contacts list and a function add_contact that adds a new contact as
a dictionary to the contacts list. We then iterate over the list to display each contact's
information.

Understanding these basic data structures and how to manipulate them using loops and
functions will greatly enhance your ability to manage and organize data in Python.

In the next chapter, we'll take a closer look at file handling and how to read from and write to
files, which is a common requirement in many Python programs.

Creating an empty list to store contacts
contacts = []

A function to add a contact
def add_contact(name, phone):
 # Create a dictionary representing a contact and append it to the 'contacts' list
 contacts.append({"name": name, "phone": phone})

Adding some contacts
add_contact("Vaishali", "555-1234")
add_contact("Lisha", "555-5678")

Displaying all contacts
for contact in contacts:
 # Access the 'name' and 'phone' fields of each contact dictionary and print them
 print(f"Name: {contact['name']}, Phone: {contact['phone']}")

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

38

Chapter 5: Basics of File Handling

Introduction to File Handling

Files are a fundamental part of any programming environment, allowing you to persist data
between sessions. Python provides built-in functions to create, read, update, and delete files,
which is known as file handling or file I/O (Input/Output).

Reading from Files
To read from a file in Python, you need to open it using the open() function, which returns a file
object. Then you can read the content using various methods like read(), readline(), or

readlines().

Example: Reading a File

The with statement automatically takes care of closing the file after the nested block of code.
The mode 'r' signifies that we are opening the file for reading.

Reading from a file

Open the file 'example.txt' in read mode ('r') <<Make sure to have sample file example.txt>>
with open('example.txt', 'r') as file:
 # Read the entire content of the file into a variable named 'content'
 content = file.read()

 # Print the content of the file
 print(content)

Note: The 'with' statement ensures that the file is properly closed after its suite finishes.
If 'example.txt' does not exist, this will raise a FileNotFoundError.

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

39

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

40

Writing to Files
Writing to a file is just as straightforward as reading. You can use the write() or writelines()
methods to add text to a file. If the file doesn't exist, Python will create it for you.

Example: Writing to a File

The mode 'w' opens the file for writing, and if the file already exists, it will be overwritten. If
you want to append to the file instead, use the mode 'a'.

Writing to a file

Open the file 'example.txt' in write mode ('w')
If 'example.txt' doesn't exist, it will be created.
If it exists, its contents will be overwritten.
with open('example.txt', 'w') as file:
 # Write the string "Hello, world!" to 'example.txt'
 file.write("Hello, world!")

Note: The 'with' statement ensures that the file is properly closed after its suite finishes.

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

41

Handling File Paths
When working with files, it's important to understand file paths. A file path describes the
location of a file in the file system.

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

42

Python can work with absolute and relative paths.

Example: Using File Paths

Practical Example: A Simple Logging Program

A common use case for file handling is to create a log file where your program can write
messages.

Example: Logging Messages to a File

In this example, the log_message function writes a message to log.txt along with a timestamp.
The mode 'a' is used to append to the log file without overwriting it.

Specifying a relative path to a file
relative_path = 'documents/notes.txt'

Specifying an absolute path to a file
absolute_path = '/home/user/documents/notes.txt'

import datetime # Import the datetime module to work with dates and times

Function to add a log message to a file
def log_message(message):
 # Open 'log.txt' in append mode ('a') so new messages are added to the end of the file
 with open('log.txt', 'a') as log_file:
 # Get the current date and time, formatted as 'YYYY-MM-DD HH:MM:SS'
 timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
 # Write the log message to the file with the timestamp and the user-provided message
 log_file.write(f"[{timestamp}] {message}\n")

Adding some log messages to demonstrate the function's usage

Log a message indicating the program has started
log_message("Program started")
Log a message indicating that an action has been performed
log_message("An action was performed")
Log a message indicating the program has ended
log_message("Program ended")

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

43

Conclusion
File handling is a vital component of Python programming, especially in data science where you
need to read data from files or write results to files. Mastering this will greatly enhance your
ability to work with persistent data.

In the next chapter, we'll explore error handling and debugging techniques that will help you

write more robust and error-free Python programs.

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

44

Chapter 6: Visualizing Data with Python

Importance of Data Visualization in Interpreting and Communicating Data Insights

Data visualization helps us understand big and complicated collections of numbers by showing
them as pictures like charts and graphs. This makes it easier for everyone, whether they know a
lot about technology or not, to see and understand important information, like what's
changing, what's normal, and what stands out.

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

45

Overview of Data Visualization
Data visualization involves creating visual representations of data to communicate information
clearly and efficiently. It can be in the form of graphs, charts, maps, and other visual formats.
The primary benefits include simplifying data analysis, enhancing decision-making, and
facilitating communication of findings.

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

46

Role of Visualization in Data Analysis Process
In data analysis, visualization serves as a key step in exploring and presenting data. It helps
analysts and stakeholders to quickly understand the results and make data-driven decisions.

Imagine you and your friends have a lemonade stand, and you want to know which days you
sell the most lemonade so you can make extra on those days. You decide to write down how
many cups you sell each day for a week. At the end of the week, you have a list of numbers, but
it's hard to see which day was the best.

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

47

So, you draw a picture, a bar chart, where each bar shows how many cups you sold on each
day. Monday might have a small bar because you only sold a few cups, but Saturday might have
a tall bar because you sold a lot!

Looking at your chart, you can easily see that Saturday is the tallest bar, so you know that's the
best day for lemonade sales. Now you can decide to make extra lemonade every Saturday to
sell more and maybe even add some cookies to your stand because you know lots of people will
come by. That's deciding based on data, and you used data visualization (your bar chart) to help
you see the information clearly and make a fun and smart choice for your lemonade stand!

Using Simple Graphs and Charts
Line Graphs: Representing Trends and Changes Over Time
Example: the lemonade sales trends over the week

The Python code provided creates a line graph that shows the lemonade sales trends over the
week. The graph has a clear upward trend, especially towards the weekend, indicating higher
sales on those days, sets the title of the graph, and labels the x-axis and y-axis as 'Day of the
week' and ’Count’, respectively. Finally, it displays the graph using plt.show().

import matplotlib.pyplot as plt

Sales data for the week
cups_sold = [15, 18, 10, 5, 9, 22, 30]
days_of_week = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"]

Create a line graph
plt.figure(figsize=(10, 5)) # Set the size of the figure
plt.plot(days_of_week, cups_sold, marker='o', color='green', linestyle='-', linewidth=2) # Plot the line
graph with markers

Add title and labels to the graph
plt.title('Lemonade Sales Trends Over the Week') # Title of the graph
plt.xlabel('Days of the Week') # Label for the x-axis
plt.ylabel('Number of Cups Sold') # Label for the y-axis

Show the graph
plt.show()

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

48

Bar Charts: Comparing Quantities Among Different Groups
Example: Showing Sales Figures of Different Products

Import the matplotlib.pyplot module for data visualization
import matplotlib.pyplot as plt

Define a list of product names
products = ['Chromebook', 'Tablet', 'Phone']

Define a list of sales figures corresponding to each product
sales = [200, 150, 300]

Create a bar chart with 'products' on the x-axis and 'sales' on the y-axis
plt.bar(products, sales, color='green')

Set the title of the chart to 'Sales Figures of Products'
plt.title("Sales Figures of Products")

Label the x-axis as 'Products'
plt.xlabel("Products")

Label the y-axis as 'Sales'
plt.ylabel("Sales")

Display the plot
plt.show()

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

49

This code snippet creates a bar chart using Matplotlib to visualize the sales figures of three
different products ('Chromebook', 'Tablet’, and ‘Phone’). The plt.bar function is used to create
the bar chart, and then the chart is titled, and the axes are labeled. Finally, plt.show() is called
to display the chart.

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

50

Histograms: Understanding the Distribution of Numerical Data
Example: Visualizing the Distribution of Ages in a Population

This code snippet creates a histogram using Matplotlib to visualize the distribution of a set of
ages. The plt.hist function is used to create the histogram with 5 bins. The histogram is then
titled, and the axes are labeled as 'Age' and 'Frequency', respectively. Finally, plt.show() is called
to display the histogram.

Import the matplotlib.pyplot module for data visualization
import matplotlib.pyplot as plt

Define a list of ages
ages = [13, 18, 22, 29, 31, 37, 45, 50]

Create a histogram of the ages with 5 bins
plt.hist(ages, bins=5,color='g', ec='skyblue')

Set the title of the histogram to 'Age Distribution'
plt.title("Age Distribution")

Label the x-axis as 'Age'
plt.xlabel("Age")

Label the y-axis as 'Frequency'
plt.ylabel("Frequency")

Display the plot
plt.show()

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

51

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

52

Scatter Plots: Examining the Relationship Between Two Numerical Variables
Example: Correlating Height and Weight Data

This code snippet creates a scatter plot using Matplotlib to visualize the relationship between
heights and weights of a group of individuals. The plt.scatter function is used for creating the
scatter plot. The plot is then titled, and the axes are labeled as 'Height' and 'Weight'. Finally,
plt.show() is called to display the scatter plot.

Import the matplotlib.pyplot module for data visualization
import matplotlib.pyplot as plt

Assume 'heights' and 'weights' are pre-defined lists or arrays
Here, 'heights' represents the heights of a group of individuals
And 'weights' represents their corresponding weights

heights = [1.75, 1.80, 1.65, 1.5, 1.35] # Heights in meters
weights = [65, 75, 68, 55, 42] # Weights in kilograms

Create a scatter plot with 'heights' on the x-axis and 'weights' on the y-axis
plt.scatter(heights, weights, color='green')

Set the title of the scatter plot to 'Height vs. Weight'
plt.title("Height vs. Weight")

Label the x-axis as 'Height'
plt.xlabel("Height")

Label the y-axis as 'Weight'
plt.ylabel("Weight")

Display the plot
plt.show()

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

53

Note: The variables heights and weights need to be defined before this code can be executed.
These variables should contain the height and weight data, respectively

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

54

Pie Charts: Displaying the Proportions of Categorical Data
Example: Python code using Matplotlib to create a pie chart. This example will assume that
we're visualizing how teenagers spend their day in hours, like sleeping, schooling, leisure, etc.

In this code:

activities represent the different activities teenagers might do in a day.

hours represent the number of hours they spend on each activity.

colors are a list of hex color codes that will be used to color each section of the pie chart.
explode is used to offset the first slice ('Sleeping') to highlight it.

autopct is used to format the value shown on each slice of the pie.

The centre_circle creates a white circle in the middle to make the chart look like a donut

chart, which is optional.

plt. axis('equal') ensures that the pie chart is drawn as a circle.

import matplotlib.pyplot as plt

Example activities of teenagers
activities = ['Sleeping', 'Schooling', 'Homework', 'Leisure', 'Sports', 'Others']

Example hours spent on each activity
hours = [8, 7, 2, 4, 1.5, 1.5]

Colors for each activity
colors = ['#ff9999','#66b3ff','#99ff99','#ffcc99', '#c2c2f0','#ffb3e6']

Explode the first slice (Sleeping)
explode = (0.1, 0, 0, 0, 0, 0)

plt.figure(figsize=(8,8)) # Set the figure size
plt.pie(hours, labels=activities, colors=colors, startangle=90, explode=explode, autopct='%1.1f%%',
shadow=True)

Draw a circle at the center to turn it into a donut chart
centre_circle = plt.Circle((0,0),0.70,fc='white')
fig = plt.gcf()
fig.gca().add_artist(centre_circle)

Equal aspect ratio ensures that pie is drawn as a circle.
plt.axis('equal')

plt.title('How Teenage Kids Spend Their Day')

plt.show()

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

55

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

56

Tools for Beginners (e.g., Matplotlib)

Introduction to Matplotlib
Matplotlib is a widely used Python library for creating static, animated, and interactive
visualizations. It's beginner-friendly and versatile for different types of plots.

Setting Up: How to Install Matplotlib and Get Started
To install Matplotlib and get started with it on macOS and Windows, you can follow these
general instructions:

For macOS:
Open Terminal: You can find it in the Applications folder under Utilities, or you can search for it
using Spotlight (Command + Space and type "Terminal").

Check if Python is installed: Type python --version or python3 --version in the Terminal and
press Enter. macOS comes with Python 2.7 by default, but Matplotlib requires Python 3.6 or
higher. If you need to install Python 3, you can download it from the official Python website.

Install pip: If you've installed Python from python.org, pip is already installed. If you're using
the system Python, you can install pip by running sudo easy_install pip.

Install Matplotlib: Run the command pip install matplotlib or pip3 install matplotlib to install
Matplotlib. You may need to add sudo at the beginning if you encounter permission issues.

Testing the installation: You can test if Matplotlib is installed correctly by running a simple
Python script that imports Matplotlib and plots a basic graph.

For Windows:
Open Command Prompt: You can do this by searching for cmd in the Start menu or by pressing
Win + R, typing cmd, and pressing Enter.

Check if Python is installed: Type python --version in the Command Prompt and press Enter. If
Python is not installed, download, and install it from the official Python website. Make sure to
check the box that says "Add Python to PATH" during installation.

Install pip: If you've installed Python from python.org, pip is already installed.

Install Matplotlib: Type pip install matplotlib in the Command Prompt and press Enter to install
Matplotlib.

Testing the installation: Test your installation by running a simple Python script that imports
Matplotlib and creates a basic plot.

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

57

Testing Matplotlib Installation:
Here's a simple Python script that you can use to test whether Matplotlib has been installed
correctly on both macOS and Windows: Basic Plotting with Matplotlib

You can run this script by saving it to a file with a .py extension and running it from the Terminal
(macOS) or Command Prompt (Windows) with the command python filename.py or python3
filename.py.

Remember to replace filename.py with the actual name of your Python script file.
If a window pops up showing a graph with a line passing through the points (1, 1), (2, 2), (3, 3),
and (4, 4), then Matplotlib has been installed correctly.

Please note that these instructions are general and might need slight modifications based on
the specific version of macOS or Windows you are using. If you encounter any issues, it's a good
idea to check the Matplotlib installation documentation for troubleshooting tips.

import matplotlib.pyplot as plt

plt.plot([1, 2, 3, 4], color='g')
plt.ylabel('some numbers')
plt.show()

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

58

Customizing Graphs
You can customize titles, labels, colors, and more to make your charts informative and
appealing.

Note: This code assumes that 'min', 'max', 'tick_values', and 'tick_labels' are predefined
variables.
Also, plt.show() should be called to display the plot after these configurations.

Import the matplotlib.pyplot module for data visualization

import matplotlib.pyplot as plt

Set the title of the plot
plt.title("Your Title Here")
This command sets the title of the plot to the specified string

Set the label for the x-axis
plt.xlabel("X-axis Label")
This command sets the label for the x-axis to the specified string

Set the label for the y-axis
plt.ylabel("Y-axis Label")
This command sets the label for the y-axis to the specified string

Add a legend to the plot
plt.legend(["label1", "label2"])
This command adds a legend to the plot with the specified labels. Each label in the list corresponds
to a dataset in the plot

Set the limits for the x-axis
plt.xlim(min, max)
This command sets the minimum and maximum values for the x-axis

Set the limits for the y-axis
plt.ylim(min, max)
This command sets the minimum and maximum values for the y-axis

Set the tick marks for the x-axis
plt.xticks(tick_values, tick_labels)
This command sets the tick marks for the x-axis. 'tick_values' specifies the positions of the ticks and
'tick_labels' specifies the labels for these positions

Set the tick marks for the y-axis
plt.yticks(tick_values, tick_labels)
This command sets the tick marks for the y-axis, like the x-axis configuration

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

59

Run below code

This code snippet demonstrates how to customize a Matplotlib plot by setting titles, labels,
legends, axis limits, and tick marks. It is important to define the variables (min, max,
tick_values, tick_labels) before using them in the plot configuration. To display the plot,
plt.show() should be added at the end.

import matplotlib.pyplot as plt

Example data to plot
x = [1, 2, 3, 4, 5]
y1 = [1, 2, 3, 4, 5]
y2 = [5, 4, 3, 2, 1]

Plot the data
plt.plot(x, y1, label='label1')
plt.plot(x, y2, label='label2')

Set the title of the plot
plt.title("Your Title Here")

Set the label for the x-axis and y-axis
plt.xlabel("X-axis Label")
plt.ylabel("Y-axis Label")

Add a legend to the plot
plt.legend()

Set the limits for the x-axis and y-axis
plt.xlim(min(x), max(x))
plt.ylim(min(y1 + y2), max(y1 + y2)) # Assuming you want the min/max from both datasets

Example values for x and y ticks
x_tick_values = [1, 2, 3, 4, 5]
y_tick_values = [1, 2, 3, 4, 5]
x_tick_labels = ['one', 'two', 'three', 'four', 'five']
y_tick_labels = ['five', 'four', 'three', 'two', 'one']

Set the tick marks for the x-axis and y-axis
plt.xticks(x_tick_values, x_tick_labels)
plt.yticks(y_tick_values, y_tick_labels)

Display the plot
plt.show()

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

60

Saving Visualizations
You can save your plots in various formats like PNG, PDF using plt.savefig('filename.format').

Conclusion
We've covered the basics of data visualization using simple graphs and charts in Python with
Matplotlib. These tools are valuable for interpreting and communicating data insights. As you
become more comfortable, explore advanced visualizations and other libraries like Seaborn and
Plotly to enhance your data storytelling skills.

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

61

Chapter 7: First Steps in Data Analysis for Everyone
Understanding Data Analysis Fundamentals

What is Data Analysis? 
Imagine you have a big pile of puzzle pieces, but you don't know what picture they're supposed
to make. Data analysis is the process of putting those pieces together to see the big picture. It's
about sifting through numbers and information to find the insights that help us make smart
decisions, much like solving a puzzle.

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

62

The Steps of Data Analysis 
Let's take a walk through a typical data analysis journey:

Collecting Data: This is like gathering all the puzzle pieces. We find and bring together all the
information we need.

Cleaning Data: Sometimes, we find puzzle pieces that don't belong to our puzzle. Cleaning data
means we remove or fix these odd pieces (errors or irrelevant information), so they won't mess
up our picture.

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

63

Exploratory Data Analysis (EDA): Now, we start trying to fit pieces together, seeing what
patterns and shapes emerge, without guessing the final picture just yet.

Building Models: With an idea of the patterns, we start to build a framework, or model, that
explains how our pieces fit together and predicts where the next pieces might go.

Interpretation: Finally, we step back and look at the picture we've made. We interpret what it
means and how it can guide our future decisions.

Different Flavors of Data Analysis 
Just like there are many kinds of puzzles, there are different types of data analysis:

Descriptive Analysis answers "What happened?" by summarizing past data.

Diagnostic Analysis digs into "Why did it happen?" looking for causes.

Predictive Analysis attempts to answer, "What's likely to happen next?" by forecasting future
trends.

Prescriptive Analysis provides recommendations, answering "What should we do about it?"

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

64

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

65

Getting to Know Pandas: Your Data Analysis Friend

Meet Pandas 
Pandas is not the cute bear, but a powerful set of tools for data analysis. It helps us read, clean,
and make sense of our data. Think of it as a friendly assistant who's great with numbers.

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

66

Setting Up Pandas 
Just like downloading a new app on your phone, setting up Pandas means getting it ready on
your computer to help with data tasks.

For macOS:
Open Terminal: You can find Terminal in the Applications folder under Utilities, or you can
search for it using Spotlight with Command + Space and typing "Terminal".

Check if Python is installed: Type python3 --version in the Terminal and press Enter. If Python 3
is not installed, you can download it from the official Python website.

Install Pip: Pip is the package installer for Python. You can install Pip by running sudo
easy_install pip in Terminal if it's not already installed.

Install Pandas: Run the command pip3 install pandas to install Pandas. You may need to add
sudo at the beginning if you encounter permission issues.

Verify Installation: Type python3 -c "import pandas as pd; print(pd.__version__)" in the
Terminal to check if Pandas is installed correctly and to see the installed version.

For Windows:
Open Command Prompt: You can do this by searching for cmd in the Start menu or by pressing
Win + R, typing cmd, and pressing Enter.

Check if Python is installed: Type python --version in the Command Prompt and press Enter. If
Python is not installed, download, and install it from the official Python website. Make sure to
check the box that says "Add Python to PATH" during installation.

Install Pip: Pip should be installed automatically with Python 3.4 and above. If it's not installed,
you can download get-pip.py from the official site and run it using Python.

Install Pandas: Type pip install pandas in the Command Prompt and press Enter to install
Pandas.

Verify Installation: Type python -c "import pandas as pd; print(pd.__version__)" in the
Command Prompt to check if Pandas is installed correctly and to see the installed version.

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

67

Testing Pandas Installation:
After installing, you can test the installation by running a simple script that uses Pandas. Create
a new Python file with the following content:

Save the file and run it using python filename.py in your Terminal or Command Prompt. Replace
filename.py with the actual name of your Python script file. If Pandas is installed correctly, you
should see the DataFrame printed without any errors.

Remember that these instructions might need slight modifications based on the specific version
of macOS or Windows you are using. If you encounter any issues, it's a good idea to check the
official Pandas documentation for troubleshooting tips.

Pandas' Handy Tools
Series and DataFrames Pandas has two main tools:

Series are like a single column of a spreadsheet – a list of numbers or text in order.

DataFrames are like the whole spreadsheet – a table with rows and columns where each
column is a Series.

Playing with Data: Simple Tricks to Get Started
Reading and Understanding Your Data 

We'll learn how to open our data files with Pandas. It's like opening a book to the first page to
understand what the story is about.

import pandas as pd

Create a simple DataFrame
df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})

Print the DataFrame
print(df)

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

68

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

69

Make sure to replace 'your_file.txt' with the actual file path and 'delimiter' with the delimiter
used in your text file (e.g., ',' for CSV files, '\t' for tab-delimited files, etc.). If your text file is just
a list of values with each value on a new line and no delimiter, you can set sep='\n'.
Note that header=None is used here to tell Pandas that the file does not contain any header
row. If your file does have a header row, you can omit this parameter or set it appropriately.

import pandas as pd

Replace 'your_file.txt' with the path to your text file
Assuming that the text file is a CSV or has a similar simple delimited format
df = pd.read_csv('your_file.txt', sep='delimiter', header=None) # replace 'delimiter' with your file's
delimiter, like ',' for CSV

If the file is a plain text file with no delimiters and you want to read it line by line
df = pd.read_csv('your_file.txt', sep='\n', header=None)

Now df is a DataFrame object containing the contents of the text file
print(df)

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

70

Cleaning and Sorting Your Data 
We'll tidy up our data, making sure it's in the right format, fixing mistakes, and sorting it to
make it easier to use, just as you would sort the puzzle edges to start making sense of the
pieces.

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

71

Exploring Small Datasets: Your First Data Adventure

What is Exploratory Data Analysis (EDA)? 
This is where we play detective with our data. We use simple tools to look for clues and
patterns without making any guesses. It's a bit like looking at each puzzle piece and guessing
where it might fit.

Let's use a simple example that could represent puzzle pieces in a hypothetical puzzle game.
We'll create a small dataset containing the color, shape, size, and number_of_edges of several
puzzle pieces, and then perform basic EDA using Pandas in Python.
Here's a simple Python script that demonstrates this:

import pandas as pd

Load your data
Replace 'your_data.csv' with the path to your data file
df = pd.read_csv('your_data.csv')

Cleaning data

Remove duplicate rows
df = df.drop_duplicates()

Fill or drop NaN (missing values)
df = df.fillna(value='some_value') # Replace 'some_value' with a specific value or method
or
df = df.dropna() # Drop rows with any NaN values

Replace values
df = df.replace('old_value', 'new_value') # Replace 'old_value' with 'new_value'

Convert data types
df['your_column'] = df['your_column'].astype('desired_type') # Replace 'desired_type' with int, float,
str, etc.

Sorting data

Sort by one or more columns
df = df.sort_values(by='column_name') # Replace 'column_name' with the name of your column
For descending order use: df.sort_values(by='column_name', ascending=False)

Reset index after sorting if needed
df = df.reset_index(drop=True)

Save cleaned and sorted data to a new file
df.to_csv('cleaned_data.csv', index=False)

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

72

In this script:
• We create a dataset with characteristics of puzzle pieces.
• We then convert this dataset into a Pandas DataFrame.
• We preview the dataset using head().
• We get basic statistics with the describe() method.
• We count how many pieces of each color there are and display this information both
textually and visually with a bar chart.
• We create a histogram to show the distribution of the sizes of the puzzle pieces.

import pandas as pd
import matplotlib.pyplot as plt

Create a DataFrame with hypothetical data about puzzle pieces
data = {
 'Color': ['Red', 'Blue', 'Green', 'Yellow', 'Blue', 'Red', 'Green'],
 'Shape': ['Square', 'Circle', 'Triangle', 'Square', 'Circle', 'Triangle', 'Square'],
 'Size': [2, 3, 1, 2, 3, 1, 2], # Let's say size is measured by some unit
 'Number_of_Edges': [4, 0, 3, 4, 0, 3, 4]
}
Convert the dictionary to a DataFrame
puzzle_pieces = pd.DataFrame(data)

Display the first few rows of the DataFrame to see what's in it
print("Preview of the Data:")
print(puzzle_pieces.head())

Basic statistics of the numerical data
print("\nBasic Statistical Details:")
print(puzzle_pieces.describe())

Count of each color
print("\nCount of Puzzle Pieces by Color:")
color_counts = puzzle_pieces['Color'].value_counts()
print(color_counts)

Visualize the count of pieces by color
plt.figure(figsize=(8, 6))
color_counts.plot(kind='bar', color='g', ec='b')
plt.title('Count of Puzzle Pieces by Color')
plt.xlabel('Color')
plt.ylabel('Count')
plt.show()

Visualize the distribution of sizes
plt.figure(figsize=(8, 6))
puzzle_pieces['Size'].plot(kind='hist', bins=3, color='g', ec='b')
plt.title('Distribution of Puzzle Piece Sizes')
plt.xlabel('Size')
plt.ylabel('Frequency')
plt.show()

Check for any correlation between numerical features
print("\nCorrelation matrix:")
print(puzzle_pieces.corr())

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

73

We calculate the correlation matrix to see if there is any relationship between the numerical
features Size and Number_of_Edges.

Green 2
Yellow 1
Name: Color, dtype: int64
Preview of the Data:
 Color Shape Size Number_of_Edges
0 Red Square 2 4
1 Blue Circle 3 0
2 Green Triangle 1 3
3 Yellow Square 2 4
4 Blue Circle 3 0

Basic Statistical Details:
 Size Number_of_Edges
count 7.000000 7.000000
mean 2.000000 2.571429
std 0.816497 1.812654
min 1.000000 0.000000
25% 1.500000 1.500000
50% 2.000000 3.000000
75% 2.500000 4.000000
max 3.000000 4.000000

Count of Puzzle Pieces by Color:
Red 2
Blue 2

Correlation matrix:
 Size Number_of_Edges
Size 1.000000 -0.675664
Number_of_Edges -0.675664 1.000000

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

74

Drawing Pictures of Data:
Visualization Techniques 
We can use graphs and charts to turn our data into pictures that are easy to understand.

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

75

Summarizing Data: The Highlights 
We summarize our data to get the key points quickly, like looking at a movie trailer instead of
watching the whole film.

Count of Puzzle Pieces by Color:

• There are an equal number of red, blue, and green puzzle pieces, with each color having
2 pieces

• Yellow puzzle pieces are the least common, with only 1 piece
• This indicates an even distribution among red, blue, and green pieces and suggests that

Yellow is less frequent in this dataset

Correlation Matrix:
• There is a negative correlation of approximately -0.676 between the Size and the

Number_of_Edges. This suggests that as the size of the puzzle pieces increases, the number
of edges tends to decrease, or vice versa. However, this is not a very strong correlation,
indicating that the relationship is moderate but not conclusive

• Both Size and Number_of_Edges have perfect correlations with themselves (as expected),
which is always 1

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

76

• The negative correlation might hint at a particular design in the puzzle pieces, where
perhaps larger pieces are designed with fewer edges for a specific purpose, such as ease of
handling or fitting into the puzzle layout

Bar chart:
The bar chart visualizes the count of puzzle pieces by color. Red, Blue, and Green colors are
equally represented with two pieces each. Yellow has fewer pieces, with only one. The chart
effectively shows the distribution of colors within the puzzle pieces, highlighting the lower
frequency of Yellow compared to the other three colors.

Histogram:
The histogram illustrates the distribution of puzzle piece sizes. The sizes are categorized into
bins, and the height of each bar shows the frequency of pieces within each size category. It
appears that:
There is a relatively lower frequency of the smallest size category (around 1.0).
The most common size category is in the middle (around 2.0), with the highest frequency,
indicating that most of the puzzle pieces are of this size.
The largest size category (around 3.0) returns to a lower frequency, like the smallest size
category.
Overall, the size distribution is somewhat U-shaped with most pieces being of medium size, and
fewer pieces are at the extremes of the smallest and largest sizes.

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

77

Case: The Mystery of the Reading Habits

Step 1: Opening the Data File
First, we need to load our data into Python.
We'll assume we have a CSV file named library_checkouts.csv that contains data on book titles,
authors, genres, checkout dates, and return dates.

Step 2: Cleaning the Data
Before we start analyzing, we need to clean the data to ensure accuracy.

Step 3: Analyzing the Data
We'll start by analyzing the checkout frequency and durations.

import pandas as pd
Load the data
data = pd.read_csv('library_checkouts.csv')

Look at the first few rows to understand the structure of the data
print(data.head())

Check for any missing values
print(data.isnull().sum())

Let's say we decide to drop rows where the genre is missing
data = data.dropna(subset=['genre'])

Convert checkout and return dates to datetime
data['checkout_date'] = pd.to_datetime(data['checkout_date'])
data['return_date'] = pd.to_datetime(data['return_date'])

Calculate the checkout duration for each book
data['checkout_duration'] = (data['return_date'] - data['checkout_date']).dt.days

Checkout frequency by genre
genre_counts = data['genre'].value_counts()
print(genre_counts)

Average checkout duration by genre
average_duration_by_genre = data.groupby('genre')['checkout_duration'].mean()
print(average_duration_by_genre)

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

78

Step 4: Visualizing the Data Visuals can help us better understand the data
and communicate our findings.

Step 5: Finding Insights
Based on our analysis and visuals, we can start to uncover insights. For example:

If the genre_counts shows high numbers for Mystery
books, we can infer that Mysteries are very popular among teenagers.

If the average_duration_by_genre shows longer durations for

Fantasy books, we might deduce that these books are longer or more engaging,
leading to longer reading times.

Step 6: Further Investigation
We can dig deeper by looking at patterns over time or correlations with other factors.

import matplotlib.pyplot as plt

Bar chart of checkout frequency by genre
genre_counts.plot(kind='bar', title='Checkout Frequency by Genre')
plt.xlabel('Genre')
plt.ylabel('Frequency')
plt.show()

Bar chart of average checkout duration by genre
average_duration_by_genre.plot(kind='bar', title='Average Checkout Duration by Genre')
plt.xlabel('Genre')
plt.ylabel('Average Duration (days)')
plt.show()

Trends over time
data['checkout_month'] = data['checkout_date'].dt.month
checkouts_over_time = data.groupby('checkout_month')['title'].count()
checkouts_over_time.plot(title='Monthly Checkouts')
plt.xlabel('Month')
plt.ylabel('Number of Checkouts')
plt.show()

Correlation between checkout duration and other factors
correlations = data.corr()
print(correlations)

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

79

Step 7: Reporting the Findings
Now, we compile our findings into a report. We highlight the most popular genres, the average
reading times, and any notable trends throughout the year.

This walkthrough is a simplified version of a data analysis process, and each step can be more
complex depending on the dataset's size and the specific questions we want to answer. Always
remember, the key to being a good data detective is to remain curious, ask lots of questions,
and let the data guide you to the answers!

Wrapping Up: Why Data Analysis Matters

Summarizing Our Journey We've learned how to put together our data puzzle and why each
step matters. Understanding the basics of data analysis helps us make sense of the world
around us through numbers and facts.

Keep Practicing! Like any skill, data analysis gets easier with practice. We'll encourage you to
keep exploring data, finding your own insights, and sharing them with others.

Each concept in this chapter will be illustrated with clear, real-world examples and step-by-step
guidance

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

80

Chapter 8: Getting to Know How Machines Learn

Making Sense of Machine Smarts
What's Machine Learning Anyway? Think of machine learning as teaching computers to make
their own smart choices, no step-by-step instructions needed.

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

81

Why Machine Learning Rocks?
Chatting about how it's changing the game in our everyday lives and all sorts of jobs, with stuff
like smarter inboxes, cool apps that know what you like, and cars that drive themselves.

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

82

The Cool Difference Between Machine Learning and Old-School Coding

Imagine you're playing a classic board game like Monopoly or Chess. Here's how this relates to
old-school computer programs:
Game Rules: Just like in a board game, where you must follow the rules exactly, old-school
computer programs had to follow their "rules" very strictly. If you're playing Monopoly, you
can't suddenly decide to move twice or collect more money than the rules allow. Similarly,
these programs couldn't deviate from their set instructions.
Turn-Based Play: Think of these programs like playing a game where each player takes turns in
a specific order. The computer couldn't skip steps or take shortcuts, much like how you must
wait for your turn in the game.

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

83

Limited Options: It's like having only a few moves you can make on each turn, depending on
where you are on the board. Early computers had limited memory and processing power, so
the programs could only do a few simple things.

Predictable Outcomes: When you roll the dice in Monopoly, you know exactly how many
spaces you'll move. Old-school programs were predictable too. If you gave them a specific
input, you'd always get the same output, just like following the rules of the game leads to
expected results.

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

84

No Cheating or Changing Rules: If you're playing a game, you can't suddenly change the rules
or cheat (well, you shouldn't!). These computer programs couldn't change their instructions or
adapt on their own. They had to follow the original "game rules" they were given.

Manual Scorekeeping: In old board games, you often must keep score yourself, write things
down, or move pieces manually. Early computer programs were similar – they needed a lot of
manual input and didn't have advanced ways to automate things.

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

85

Error Handling: Imagine if you make a move that's not allowed in the game, and you must go
back and correct it. In old computer programs, if something went wrong, they didn't know how
to fix themselves. The programmer had to find and fix the problem, like a player correcting a
wrong move.

Playing by the Board's Layout: The layout of the board game dictates how you can move and
what actions you can take. Similarly, the "board" for these programs was the computer's
operating system, which set rules on how the program could operate.

Now as we are moving towards intelligent machines using machine learning, imagine you're
teaching someone how to play Monopoly, but instead of a person, you're teaching a robot. This
robot has never played the game before and doesn't know the rules or strategies.

Observation: The first step is for the robot to observe many rounds of Monopoly. It watches
where players land, which properties they buy, and when they buy houses or hotels. It also
pays attention to how money changes hands, what happens when someone goes to jail, and
how players interact with each other.

Data Collection: As the robot observes, it collects data. This data includes everything it sees:
the rolls of the dice, the choices players make, the cards they draw from the community chest
and chance piles, and even the outcomes of each game.

Learning: Now, the robot starts to look for patterns in the data. Maybe it notices that players
who buy certain properties tend to win more often, or that there's a certain risk in trading

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

86

properties with other players. It uses these patterns to form strategies. It's like when you learn
from your own experiences playing the game. If something works well, you'll probably do it
again, but if it doesn't, you might try something different next time.

Strategy Development: The robot then uses the patterns it has recognized to make decisions. If
it's playing the game itself, it might decide to buy or not buy a property based on what it has
learned. It might also develop a strategy for dealing with jail or deciding when to trade
properties.

Testing and Improvement: As the robot plays more games, it continues to learn and refine its
strategies. It sees what works and what doesn't, adjusting its approach each time. This is how it
improves. If a strategy leads to winning the game, the robot will remember it and use it more
often. If a strategy leads to losing, the robot will use it less or change it.

Machine Learning: This process—observing data, recognizing patterns, making decisions based
on those patterns, and then learning from the outcomes—is essentially what machine learning
is about. The robot, like a machine learning algorithm, uses statistics and probability to predict
outcomes and make decisions that it thinks will lead to the best result.

Adapting and Improving: Just as your friend gets better with practice, the ML program adjusts
its strategy as it plays more games and robot will get better at it. This process is called
optimization. It might learn, for example, that holding onto cash for auctions is a good strategy.

Feedback Loop: If your friend makes a bad move and loses the game, they'll remember that
and consider it next time they play. The ML program does this through a feedback loop,
constantly adjusting its algorithms based on whether its decisions lead to wins or losses.

Python for Machine Learning: The Easy Start

Getting Your Tech Ready: A quick guide to get Python

For macOS:

Install Homebrew (optional but recommended)

Homebrew is a package manager for macOS that makes it easy to install software. Open the
Terminal and run the following command:

Install Python with Homebrew
Once Homebrew is installed, you can install Python by running:

/bin/bash -c "$(curl -fsSLhttps://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

brew install python

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

87

This will install the latest version of Python.

Verify the Installation
Check the version of Python installed by running:

This should output the version number of Python 3.

Install an IDE or Text Editor
You can install an IDE like PyCharm or a text editor such as Visual Studio Code to write your
Python code.

Install pip (if not already installed with Python)
Pip is the package installer for Python. You can install pip by downloading get-pip.py from the
official pip website and then running:

Set up a Virtual Environment (optional)
For project-specific dependencies, it's a good practice to use virtual environments. Create one
by running:

Activate it with:

For Windows:

Download Python
Go to the official Python website (python.org) and download the latest version of Python for
Windows.

Run the Installer
Open the downloaded file to start the installation.
Make sure to check the box that says, "Add Python 3.x to PATH" before you click "Install Now."

Verify the Installation
Open Command Prompt and type:

python3 --version

python3 get-pip.py

python3 -m venv myenv

source myenv/bin/activate

python --version

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

88

This should display the installed Python version.

Install an IDE or Text Editor
Like macOS, you can install an IDE or text editor like Visual Studio Code.

Install pip (if not already installed)
Pip is typically included in the Python installation. You can check if it's installed by running:

Set up a Virtual Environment (optional)
Create a virtual environment for your project by navigating to your project directory and
running:

Activate it with:

After following these steps, you should have a working Python development environment on
either macOS or Windows. You can now begin installing packages with pip and writing Python
code in your preferred editor or IDE.

pip --version

python -m venv myenv

myenv\Scripts\activate.bat

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

89

Building Your Very First Learning Machine

A simple Python code for a machine learning program that predicts whether a student passes
an exam based on hours studied. This is a logistic regression model, which is a basic type of
model used for binary classification tasks. In this example, the model achieved 100% accuracy
on the test set, which means it predicted all the outcomes correctly. This might be due to the
simplicity of the dataset and the clear distinction between the number of hours studied for
those who passed versus those who failed.

To run this code, you need to have Python installed along with the pandas and scikit-learn
libraries.

Importing necessary libraries
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

Creating a DataFrame with 'hours_studied' and 'passed_exam' columns
This is our dataset: how many hours students studied and if they passed (1) or failed (0)
data = {
 'hours_studied': [0.5, 1.5, 2.0, 4.5, 3.0, 5.0, 6.0, 7.5, 8.0, 1.0, 9.0, 8.5, 7.0, 3.5],
 'passed_exam': [0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0]
}
df = pd.DataFrame(data)

Splitting our dataset into features (X) and target (y)
X = df[['hours_studied']] # Input feature: hours studied
y = df['passed_exam'] # Output target: passed exam

Splitting dataset into training and test sets (70% train, 30% test)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

Creating and training the Logistic Regression model
model = LogisticRegression()
model.fit(X_train, y_train)

Predicting outcomes for the test set
predictions = model.predict(X_test)

Calculating the accuracy of the model
accuracy = accuracy_score(y_test, predictions)

Outputting the accuracy
print(f"The accuracy of the model is: {accuracy * 100:.2f}%")

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

90

The Python code above creates a simple guessing game using a Decision Tree Classifier, a
fundamental machine learning algorithm. Let's go through the code step by step:

Generate a synthetic dataset: We simulate a game where the goal is to guess if a number is
even (labelled as 1) or odd (labelled as 0). We create a set of 20 random integers between 1
and 100. This is our feature set.

Create labels: For each number, we determine if it's even or odd. Even numbers are labelled as
1 and odd numbers as 0.

Reshape the data: Machine learning models in scikit-learn expect data to be in a two-
dimensional array of shape (n_samples, n_features). Since we have one feature, we reshape
our array to be of shape (20, 1) where 20 is the number of samples.

Initialize the DecisionTreeClassifier: We create an instance of the DecisionTreeClassifier. This is
the machine learning algorithm that will learn from our data.

Train the classifier: We use the .fit() method to train the classifier on our entire dataset. The
model learns to associate the input numbers with the corresponding labels (even or odd).

Test the model: We create a new set of numbers that the model has never seen before. These
are used to test how well our model has learned from the initial dataset.

Make predictions: The trained model uses the .predict() method to guess whether the new
numbers are even or odd.

Evaluate the model: We calculate the accuracy of the model's predictions by comparing them
with the true labels of the test set. The accuracy_score function from scikit-learn is used for this
purpose.

After running the code, the model made predictions on the test set, consisting of the numbers
[2, 3, 5, 8, 13, 21, 34]. The predictions returned by the model are [0, 1, 1, 1, 1, 1, 0]. The actual
labels for these numbers (assuming 1 for even and 0 for odd) would be [1, 0, 0, 1, 0, 0, 1].
Comparing the predictions with the true labels, we see that the model made an error predicting
the first and the last numbers (2 is even, and 34 is even, but the model predicted them as odd).
The accuracy of the model is approximately 85.71%, which means it made correct predictions
for most of the numbers in the test set, except for a couple of instances where it got confused.
This could be due to the limited size of the dataset or the inherent randomness of the numbers.

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

91

What's in a Dataset?
Think of a dataset like a collection of game logs. It’s a bunch of examples that the machine uses
to learn. If you were trying to teach someone chess, you’d show them lots of different games,
right? A dataset does the same thing for a computer.

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

92

Features & Labels:
In our chess example, features would be the moves made in each game, and the labels might
be who won in the end. Features are details the computer uses to make a prediction, and labels
are the answers it’s trying to learn to predict.

Two Flavors of Learning:

Supervised Learning: This is like having a coach who tells you what moves to make during
practice. You learn from the direct feedback. In machine learning, this means the computer is
given both the features (the moves) and the labels (who won) so it can learn the right pattern.
Unsupervised Learning: Now, this is like practicing chess but without knowing who won each
game. You must figure out patterns and strategies by yourself, just from the moves. In
unsupervised learning, the computer only gets features and must make sense of the data
without any labels.

When Machines Get Confused:

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

93

Confusion with Underfitting and Overfitting:

Underfitting: Imagine you learned how to play chess but only focused on how to move the
pawns. That’s underfitting. You’re not learning enough to play the whole game well because
you’re not considering all the pieces.

Overfitting: Now, suppose you practiced chess but only against one friend who makes very
unusual moves. If you learn to beat just that friend, you might not do well against others
because you’re too focused on one style. That’s overfitting. It’s when the computer learns the
training data so well, including its quirks, that it doesn’t perform well on new data.

Practice Makes Perfect:
Just like getting better at a game, the more the computer practices with a variety of examples
(in datasets), the better it gets at making predictions. It learns from mistakes (just like gamers
do when they lose a level) and tries to get better the next time. But it’s important to keep the
practice balanced and not just focus on one part, so it doesn’t get underfit or overfit.

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

94

That's a Wrap!

A Nudge to Keep Exploring: Encouraging you to keep playing around with machine learning,
trying out trickier stuff and different kinds of data.

Hands-On Time!
Fun activities to really get the ideas from the chapter to stick, like trying to teach your computer
something new or checking out a brand-new dataset.

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

95

Chapter 9: The Internet and Python

Basics of Internet and Web Data

Understanding the Internet:
Imagine the internet is like the biggest, fastest, and most complex game of "mail delivery" you
could ever play. Instead of letters and packages, you're sending and receiving tiny packets of
data, and instead of post offices, there are millions of computers, routers, and servers that help
direct these packets to where they need to go.

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

96

Here’s how you can think of it in steps, kind of like how you would explain setting up and
playing a board game:

Step 1: Writing the Address
Just like when you send a letter, you need to know the address of where you’re sending it. On
the internet, instead of a home address, we use web addresses (like www.example.com) or
email addresses.

Step 2: The Postman Picks Up Your Mail
When you hit send on an email or enter a web address, your information is split into many
small packets, like breaking up a letter into lots of tiny pieces. Your computer is like your
house’s mailbox, where the postman (the internet) picks up the packets.

Step 3: Going Through Sorting Centers
These packets travel through various devices (like routers) that act as sorting centers, deciding
which route is the quickest and safest for the packets to travel. It's like how the postal service
sorts of mail to send it in the right direction.

Step 4: Delivery Trucks on Highways
The packets travel along internet cables, like delivery trucks on highways. These cables can go
across your city, under the ocean, and all over the world. Some packets might even travel
through satellites in space, like sending a letter via a rocket!

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

97

Step 5: Arriving at the Right Mailbox
Once the packets reach their destination, the computer there (like the recipient’s house) checks
the address to make sure it’s correct and then puts all the pieces of the letter back together so
it can be read in full.

Step 6: The Reply
Just like when someone writes back to you, the recipient’s computer sends packets back to you
to say the webpage is loading or the email was received.

And that's basically the internet—a huge, worldwide network that's always working to deliver
our digital mail as quickly and safely as possible!

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

98

What is Web Data?
We'll describe web data as a massive collection of information, like the variety of books you'd
find in a large library, highlighting the sheer amount of data available online.

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

99

The Significance of Web Data:
When you go on the internet, there's a ton of information, right? Well, that's what we call "web
data," and it's super useful for all kinds of things.

1. Conducting Research:
Imagine you're working on a school project about your favorite animal. You dive into the
internet ocean to find all sorts of facts about where it lives, what it eats, and cool stuff like how
it communicates. That’s using web data for research. It’s like collecting golden coins of
knowledge without having to travel to a jungle or deep sea.

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

100

2. Performing Market Analysis:
Say you're starting a lemonade stand. You want to know how many people like lemonade, what
kind they prefer, and how much they're willing to pay. Web data is like sending out a bunch of
tiny drones to gather this info for you. It helps you figure out how to make your lemonade
stand the best on the block.

3. Gathering Customer Feedback:
Now, let's say you’ve been selling your lemonade for a while, but you want to make it even
better. You can check out what people are saying online about your stand. Web data collects
comments, likes, and reviews - it's like having a bunch of friends giving you tips on how to
improve your recipe or decoration.

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

101

4. Other Cool Applications:
Personalizing Your Online Experience: Ever notice how websites seem to know just what
you’re interested in? That's because web data helps them learn about your likes and show you
stuff you care about, like suggesting a new game or a movie you might love.

Improving Health Care: Doctors can use web data to learn about new treatments or health
trends. It’s like having a health detective finding clues to keep everyone healthy.

Making Maps Smarter: When you use a map app, it uses web data to tell you the fastest way to
get to the pizza place. It’s like having an eagle’s eye view of all the roads and traffic.

Helping the Environment: Scientists can use data from the web to track things like air pollution
or where to plant more trees. It’s kind of like using the internet as a superhero’s gadget to
protect the planet.

In short, web data is like having a super-powered helper for pretty much anything you want to
do or learn about. It’s all about knowing how to find it and use it wisely!

Simple Web Scraping and API Interaction

Web Scraping Explained:
Think about a bulletin board in your school hallway that's packed with flyers, announcements,
and notes. There's a bunch of information there, right? Now, imagine you have a school project,
and you need to gather all the latest announcements about upcoming events. You could go to
the bulletin board every day and write down the new stuff, or you could get smart about it.
Here's where the cool idea of web scraping comes in.

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

102

Web scraping is like having a personal robot assistant.
Instead of you going to the bulletin board and copying down all the announcements by hand,
you send your robot buddy. This robot is programmed to look at the board, recognize new and
relevant announcements, and copy them down for you. It's super-fast and accurate, and it
doesn't get bored!

When people do web scraping, they use computer programs to do what the robot does in our
example. These programs can:

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

103

Find the Right Bulletin Boards (Websites): They look for the websites that have the information
you need.

Recognize the Announcements (Data): They figure out which parts of the website are
important - like finding the date of the school dance or the time of the soccer game.

Copy the Info (Extract Data): They take that important information and save it so you can look
at it later, just like how your robot would bring you notes from the bulletin board.

Organize the Notes (Data Structuring): Sometimes, they'll even sort it into categories, like all
the sports events together and all the club meetings together, to make it easier for you to
understand.

But remember, just like with a real bulletin board, there are rules.
Some websites don’t want you to scrape their data, or they only want you to do it in certain
ways. It's like how some of the announcements on the board might say "do not take," so you
just read them and don’t remove them from the board.

So, web scraping is a powerful tool for collecting information from the internet quickly, but
you've got to use this tool responsibly, just like any other super-smart robot helper you might
get your hands on.

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

104

Python Tools for Web Scraping:
Python has several libraries that are great for web scraping. Two of the most popular ones are
BeautifulSoup and Scrapy.

Here's a simple example using BeautifulSoup along with requests to scrape data from a
webpage. In this case, let's say we want to scrape quotes from a webpage that displays a list of
quotes.

First, you'll need to install the required packages if you haven't already:

pip install beautifulsoup4 requests

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

105

Here's a simple Python script to scrape quotes from a webpage:

import requests
from requests.adapters import HTTPAdapter
from requests.packages.urllib3.util.retry import Retry
from bs4 import BeautifulSoup

The target URL
url = 'http://quotes.toscrape.com/'

Create a session object
session = requests.Session()
Define the retry parameters (here, total=3 will retry the request 3 times before giving up)
retries = Retry(total=3, backoff_factor=0.1)
Mount it for both http and https usage
session.mount('http://', HTTPAdapter(max_retries=retries))
session.mount('https://', HTTPAdapter(max_retries=retries))

try:
 # Send a GET request to the URL using the session
 response = session.get(url)
 response.raise_for_status() # Will raise an HTTPError if the HTTP request returned an unsuccessful
status code
except requests.exceptions.HTTPError as errh:
 print(f"Http Error: {errh}")
except requests.exceptions.ConnectionError as errc:
 print(f"Error Connecting: {errc}")
except requests.exceptions.Timeout as errt:
 print(f"Timeout Error: {errt}")
except requests.exceptions.RequestException as err:
 print(f"OOps: Something Else: {err}")

Continue with BeautifulSoup if the request was successful
if response.ok:
 # Parse the HTML content of the page with BeautifulSoup
 soup = BeautifulSoup(response.text, 'html.parser')

 # Find all the quote containers on the page
 quotes_divs = soup.find_all('div', class_='quote')

 # Loop through each container to extract the quote and its author
 for quote_div in quotes_divs:
 quote_text = quote_div.find('span', class_='text').get_text() # Extract the quote text
 author = quote_div.find('small', class_='author').get_text() # Extract the author's name
 print(f'{quote_text} - {author}')

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

106

This script will print out all the quotes along with their authors from the first page of
http://quotes.toscrape.com/.

Output

Please note: This code is for educational purposes. Always check the website's robots.txt file
and Terms of Service to ensure you are allowed to scrape it, and always make your web
scrapers respectful by not overloading the server with too many requests in a short period.

Understanding APIs:
Imagine you're at your favorite restaurant with a menu full of delicious dishes. You know
exactly what you want to eat, but instead of going into the kitchen to make it yourself (which
would be chaotic if everyone did that), you have a waiter to communicate your order to the
kitchen. This way, the kitchen knows what to cook, and you can sit back and wait for your food
to be served.

In the world of computer programs, an API (Application Programming Interface) is like the
waiter in a restaurant:

You Have a Menu (API Documentation): Just like a menu in a restaurant lists all the dishes you
can order, an API has documentation that tells you what requests you can make, like getting
user data, posting a message, or anything else the service offers.

You Place an Order (Make a Request): When you decide what you want, you tell the waiter. In
the same way, when you know what information you want from a program, you send a request
to the API.

The Kitchen Prepares Your Dish (Processing the Request): The waiter takes your order to the
kitchen, where the cooks prepare your meal. Similarly, the API takes your request to the
software system, where it processes what you've asked for.

Waiter Delivers the Food (API Responds): The waiter brings back your food, just as you
ordered. Likewise, the API returns the data or result back to your program.

You Enjoy Your Meal (Use the Data): Finally, you get to enjoy the dish you requested. In the
tech world, your program gets to use the data or result it received from the API.

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

107

This process allows different software to "talk" to each other without needing to know how the
other one works internally – just like you don't need to know how to cook all the dishes, you
just need to know what to ask for. APIs are great because they provide a standard way for
programs to interact, much like menus and waiters provide a standard way for you to get your
food.

 Mastering the Basics – Must Learn Python Concepts for Data Science and Artificial Intelligence

Author – Vaishali Lambe, ChatGPT4, Copy.ai, ChatPDF

108

Using Python for API Calls:
Let's go through a simple example of using a Python library called requests to make an API call.
We'll use a fictional API that provides information about books.

First, you need to install the requests library if you haven't already. You can install it using pip:

Now, let's look at the Python code:

Remember, this code is for illustrative purposes and won't work unless you have a real API
endpoint to make a request to. The comments in the code explain what each part of the code is
doing in simple terms.

The Next Steps: We'll inspire you to keep moving forward, whether that means starting a new

project, learning an additional Python library, or joining a community where you can contribute

and grow.

Import the requests library
import requests

The URL of the API endpoint
url = "http://example.com/api/books"

The parameters you want to pass to the API - these work like the options you might specify in your
order.
For instance, you might want to specify the title of the book you're looking for.
params = {
 'title': 'The Great Gatsby'
}

Make a GET request to the API endpoint.
This is like telling the waiter what you want to order.
response = requests.get(url, params=params)

Check if the request was successful.
if response.status_code == 200:
If the request was successful, you can use the data that was returned.
This is like getting your food from the waiter and then eating it.
data = response.json()
print("Book found:", data)
else:
If the request failed, you can handle the error here.
This is like the waiter telling you that they're out of what you ordered.
print("Failed to retrieve data. Status code:", response.status_code)

pip install requests

