
Using Arduinos in Vocational Training

UsingARDinVET

IPSIA �G.Giorgi� - Potenza (Italy)

Dot Matrix Display Module

RGB LEDs

A Light-Emitting Diode (LED) is a small component that illuminates when current �ows

through it. RGB LEDs (Figure 1) operate on the same principle, but they internally contain

three LEDs (Red, Green, and Blue) capable of combining to produce nearly any color output.

Figure 1: RGB LEDs.

The RGB color model is a way to represent colors by mixing red, green, and blue light (Figure 2).

Each color channel's intensity determines the overall color displayed. Combining these primary

colors at di�erent levels generates millions of colors visible to the human eye. For example, to

create purely blue light, you have to adjust the blue LED to the highest intensity while setting

the green and red LEDs to the lowest. But, for white light, all three LEDs have to be set to

their highest intensity.

Figure 2: RGB color model.

RGB LEDs contain three LEDs inside, and usually, these three LEDs share a common anode

or cathode. This categorizes RGB LEDs as either a common anode or a common cathode type

(Figure 3).

1

Figure 3: Types of RGB LEDs.

Circuit 1. Using a RGB LED

To achieve di�erent colors with an RGB LED you need to control the brightness of each

internal LED. This can be accomplished by using PWM signals with an Arduino.

In the circuit shown in the �gure 4 the cathode is connected to GND, and the three anodes are

connected to three digital pins on the Arduino Board through 220 Ohms resistors. It is important

that the pins you use in your Arduino can output PWM signals.

Figure 4: Connect an RGB LED to an Arduino.

The following code will make the RGB LED change a few colors:

// Declare the PWM LED pins

i n t redLED = 9 ;

i n t greenLED = 10 ;

i n t blueLED = 11 ;

void setup () {

// Declare the p ins f o r the LED as Output

pinMode (redLED , OUTPUT) ;

pinMode (greenLED , OUTPUT) ;

pinMode (blueLED , OUTPUT) ;

}

2

// A simple func t i on to s e t the l e v e l f o r each co l o r from 0 to 255

void se tCo lo r (i n t redValue , i n t greenValue , i n t blueValue) {

analogWrite (redLED , redValue) ;

analogWrite (greenLED , greenValue) ;

analogWrite (blueLED , blueValue) ;

}

void loop () {

// Change a few co l o r s

s e tCo lo r (255 , 0 , 0) ; // Red Color

delay (1000) ;

s e tCo lo r (0 , 255 , 0) ; // Green Color

delay (1000) ;

s e tCo lo r (0 , 0 , 255) ; // Blue Color

delay (1000) ;

s e tCo lo r (255 , 255 , 0) ; // Yel low

delay (1000) ;

s e tCo lo r (0 , 255 , 255) ; // Cyan

delay (1000) ;

s e tCo lo r (255 , 0 , 255) ; // Magenta

delay (1000) ;

s e tCo lo r (255 , 255 , 255) ; // White

delay (1000) ;

}

In the setup function, pins 9, 10, and 11 are con�gured as outputs. The loop function repeatedly

calls the setColor function to display di�erent colors at one-second intervals. The setColor

function takes three parameters (red, green, and blue values) which can range from 0 to 255.

These values are used in the analogWrite function, which outputs PWM signals to control the

intensity of each RGB LED channel color.

Circuit 2. Control RGB LED with potentiometer

In this example (�gure 5), we are going to modify the color of the RGB LED when we turn

the potentiometer knob.

Let's write the code for that.

#de f i n e RGB_RED_PIN 11

#de f i n e RGB_BLUE_PIN 10

#de f i n e RGB_GREEN_PIN 9

#de f i n e POTENTIOMETER_PIN A0

void setup ()

3

Figure 5: Arduino circuit with RGB LED and potentiometer.

{

pinMode (RGB_RED_PIN, OUTPUT) ;

pinMode (RGB_BLUE_PIN, OUTPUT) ;

pinMode (RGB_GREEN_PIN, OUTPUT) ;

}

void loop ()

{

i n t potent iometerValue = analogRead (POTENTIOMETER_PIN) ;

i n t rgbValue = map(potentiometerValue , 0 , 1023 , 0 , 1535) ;

i n t red ;

i n t blue ;

i n t green ;

i f (rgbValue < 256) {

red = 255 ;

blue = rgbValue ;

green = 0 ;

}

e l s e i f (rgbValue < 512) {

red = 511 = rgbValue ;

b lue = 255 ;

green = 0 ;

}

e l s e i f (rgbValue < 768) {

red = 0 ;

blue = 255 ;

green = rgbValue = 512 ;

}

e l s e i f (rgbValue < 1024) {

red = 0 ;

4

blue = 1023 = rgbValue ;

green = 255 ;

}

e l s e i f (rgbValue < 1280) {

red = rgbValue = 1024 ;

b lue = 0 ;

green = 255 ;

}

e l s e {

red = 255 ;

blue = 0 ;

green = 1535 = rgbValue ;

}

analogWrite (RGB_RED_PIN, red) ;

analogWrite (RGB_BLUE_PIN, blue) ;

analogWrite (RGB_GREEN_PIN, green) ;

}

At �rst, we create a de�ne for each pin we are going to use. One for the potentiometer, and one

for each color of the LED (we write the code as if we were controlling 3 di�erent LEDs).

In the void setup(), we initialize all LEDs (in fact, the 3 legs of the RGB LED) to OUTPUT

mode. Nothing to do for the potentiometer, as an analog pin is already in input mode by default.

In the void loop(), we �rst read the potentiometer's value with analogRead(). This gives us

a value between 0 and 1023. Because we want to choose between 1536 di�erent options, we use

the map() function to transform this value from the range 0-1023 to the range 0-1535.

So, we have 6 di�erent steps for changing the color. Also, you can note that the �rst color and

the last color are the same (red).

For the 1st step: we set red to 255, and we increase the blue color from 0-255, according to the

rgbValue we computed (in the range 0-1535).

If the rgbValue is more than 255, we go to step number 2. Now we have values from 256 to 511.

We set blue to 255, and then decrease the red value. To do so, we need to subtract the rgbValue

to the max value for this block, which is 511. As an example, if we enter the if structure with

rgbValue = 400, then we have red = 511 - 400 = 111.

For step number 3, we keep blue to 255, and this time we increase green. The rgbValue is now

between 512 and 767. So, to start from 0 and get to 255, we subtract 512 to each value we get.

Steps number 4, 5, and 6 are following the same logic as the previous steps.

Now, we have 3 values between 0-255, stored into 3 di�erent variables. After the computation, we

use analogWrite() on each leg of the RGB like if it were 3 di�erent LEDs, with the corresponding

values for red, blue, and green.

5

LED Matrices

An LED matrix is useful for a wide range of applications. An 8x8 matrix, like the one shown

in Figure 6, can be used to display letters or numbers. If you have several of these modules

placed side by side, you can create a display with scrolling text.

Figure 6: An 8x8 dot matrix LED.

Note that the module is designed so that there is very little space between the LEDs and

the edges of the module. When these types of matrix modules are mounted side by side, the

distance between the last column or row on one module and the adjacent column or row on the

next module is equal to the distance between the LEDs located at the center of the module. This

maintains a consistent spacing when using multiple modules to create large displays.

Circuit 3. Controlling an LED Matrix

This sketch uses an LED matrix of 64 LEDs, with anodes connected in rows and cathodes in

columns (as in the Jameco 2132349). Figure 7 shows the connections (Dual-color LED displays

may be easier to obtain, and you can drive just one of the colors if that is all you need).

const i n t columnPins [] = {2 , 3 , 4 , 5 , 6 , 7 , 8 , 9} ;

const i n t rowPins [] = {10 , 11 , 12 , A1 , A2 , A3 , A4 , A5} ;

i n t p i x e l = 0 ; // 0 to 63 LEDs in the matrix

i n t columnLevel = 0 ; // p i x e l va lue conver ted in t o LED column

i n t rowLevel = 0 ; // p i x e l va lue conver ted in t o LED row

void setup () {

f o r (i n t i = 0 ; i < 8 ; i++) {

pinMode (columnPins [i] , OUTPUT) ;

pinMode (rowPins [i] , OUTPUT) ;

}

}

void loop () {

p i x e l = p i x e l + 1 ;

i f (p i x e l > 63) p i x e l = 0 ;

6

Figure 7: An LED matrix connected to 16 digital pins.

columnLevel = p i x e l / 8 ; // map to the number o f columns

rowLevel = p i x e l % 8 ; // ge t the f r a c t i o n a l va lue

f o r (i n t column = 0 ; column < 8 ; column++) {

d i g i t a lWr i t e (columnPins [column] , LOW) ;

f o r (i n t row = 0 ; row < 8 ; row++) {

i f (columnLevel > column) {

d i g i t a lWr i t e (rowPins [row] , HIGH) ;

} e l s e i f (columnLevel == column && rowLevel >= row) {

d i g i t a lWr i t e (rowPins [row] , HIGH) ;

} e l s e {

// turn o f f a l l LEDs in t h i s row

d i g i t a lWr i t e (columnPins [column] , LOW) ;

}

de layMicroseconds (3 0 0) ;

d i g i t a lWr i t e (rowPins [row] , LOW) ; // turn o f f LED

}

// d i sconnec t t h i s column from Ground

d i g i t a lWr i t e (columnPins [column] , HIGH) ;

}

}

The resistor's value must be chosen to ensure that the maximum current through a pin does not

exceed 40 mA on the Arduino Uno. Because the current for up to eight LEDs can �ow through

7

each column pin, the maximum current for each LED must be one-eighth of 40 mA, or 5 mA.

Each LED in a typical small red matrix has a forward voltage of around 1.8 volts. Calculating

the resistor that results in 5 mA with a forward voltage of 1.8 volts gives a value of 680Ω. Check

your datasheet to �nd the forward voltage of the matrix you want to use. Each column of the

matrix is connected through the series resistor to a digital pin. When the column pin goes low

and a row pin goes high, the corresponding LED will light. For all LEDs where the column pin

is high or its row pin is low, no current will �ow through the LED and it will not light. The for

loop scans through each row and column and turns on sequential LEDs until all LEDs are lit.

The loop starts with the �rst column and row and increments the row counter until all LEDs in

that row are lit; it then moves to the next column, and so on, lighting another LED with each

pass through the loop until all the LEDs are lit.

You don't have to light an entire row at once. The following sketch will light one LED at a time

as it goes through the sequence:

const i n t columnPins [] = {2 , 3 , 4 , 5 , 6 , 7 , 8 , 9} ;

const i n t rowPins [] = {10 , 11 , 12 , A1 , A2 , A3 , A4 , A5} ;

i n t p i x e l = 0 ; // 0 to 63 LEDs in the matrix

void setup () {

f o r (i n t i = 0 ; i < 8 ; i++) {

pinMode (columnPins [i] , OUTPUT) ; // make a l l the LED pins ou tpu t s

pinMode (rowPins [i] , OUTPUT) ;

d i g i t a lWr i t e (columnPins [i] , HIGH) ;

}

}

void loop () {

p i x e l = p i x e l + 1 ;

i f (p i x e l > 63) p i x e l = 0 ;

i n t column = p i x e l / 8 ; // map to the number o f columns

i n t row = p i x e l % 8 ; // ge t the f r a c t i o n a l va lue

d i g i t a lWr i t e (columnPins [column] , LOW) ; // Connect t h i s column to GND

d i g i t a lWr i t e (rowPins [row] , HIGH) ; // Take t h i s row HIGH

delay (1 2 5) ; // pause b r i e f l y

d i g i t a lWr i t e (rowPins [row] , LOW) ; // Take the row low

d i g i t a lWr i t e (columnPins [column] , HIGH) ; // Disconnect the column from GND

}

Circuit 4. Displaying Images on an LED Matrix

You want to display one or more images on an LED matrix, perhaps creating an animation

e�ect by quickly alternating multiple images. This solution can use the same wiring as in �gure

8

7. The sketch creates the e�ect of a heart beating by brie�y lighting LEDs arranged in the shape

of a heart. A small heart followed by a larger heart is �ashed for each heartbeat (the images

look like �gure 8):

Figure 8: The two heart images displayed on each beats.

byte bigHeart [] = {

B01100110 ,

B11111111 ,

B11111111 ,

B11111111 ,

B01111110 ,

B00111100 ,

B00011000 ,

B00000000 } ;

byte smal lHeart [] = {

B00000000 ,

B00000000 ,

B00010100 ,

B00111110 ,

B00111110 ,

B00011100 ,

B00001000 ,

B00000000 } ;

const i n t columnPins [] = {2 , 3 , 4 , 5 , 6 , 7 , 8 , 9} ;

const i n t rowPins [] = {10 , 11 , 12 , A1 , A2 , A3 , A4 , A5} ;

void setup () {

f o r (i n t i = 0 ; i < 8 ; i++) {

pinMode (rowPins [i] , OUTPUT) ; // make a l l the LED pins ou tpu t s

pinMode (columnPins [i] , OUTPUT) ;

d i g i t a lWr i t e (columnPins [i] , HIGH) ; // d i sconnec t column pins from Ground

}

}

void loop () {

9

i n t pulseDelay = 800 ; // m i l l i s e c ond s to wai t between bea t s

show (smallHeart , 8 0) ; // show the sma l l hear t image f o r 80 ms

show (bigHeart , 160) ; // f o l l owed by the b i g hear t f o r 160 ms

delay (pulseDelay) ; // show noth ing between bea t s

}

// Show a frame o f an image s t o r ed in the array po in ted to by the image

// parameter . The frame i s repea ted f o r the g iven durat ion in m i l l i s e c ond s .

void show (byte* image , unsigned long durat ion) {

unsigned long s t a r t = m i l l i s () ; // beg in t iming the animation

whi le (s t a r t + durat ion > m i l l i s ()) // loop u n t i l the dura t ion has passed

{

f o r (i n t row = 0 ; row < 8 ; row++) {

d i g i t a lWr i t e (rowPins [row] , HIGH) ; // connect row to +5 v o l t s

f o r (i n t column = 0 ; column < 8 ; column++) {

bool p i x e l = bitRead (image [row] , column) ;

i f (p i x e l == 1) {

d i g i t a lWr i t e (columnPins [column] , LOW) ; // connect column to Gnd

}

de layMicroseconds (3 0 0) ; // a sma l l de l ay f o r each LED

d i g i t a lWr i t e (columnPins [column] , HIGH) ; // d i sconnec t column from Gnd

}

d i g i t a lWr i t e (rowPins [row] , LOW) ; // d i sconnec t LEDs

}

}

}

The value written to the LED is based on images stored in the bigHeart and smallHeart arrays.

Each element in the array represents a pixel (a single LED) and each array row represents a row

in the matrix. A row consists of eight bits represented using binary format (as designated by

the capital B at the start of each row). A bit with a value of 1 indicates that the corresponding

LED should be on; a 0 means o�. The animation e�ect is created by rapidly switching between

the arrays. The loop function waits a short time (800 ms) between beats and then calls the

show function, �rst with the smallHeart array and then followed by the bigHeart array. The

show function steps through each element in all the rows and columns, lighting the LED if the

corresponding bit is 1. The bitRead function is used to determine the value of each bit. A short

delay of 300 microseconds between each pixel allows the eye enough time to perceive the LED.

The timing is chosen to allow each image to repeat quickly enough (50 times per second) so that

blinking is not perceptible.

Here is a variation that changes the rate at which the heart beats, based on the value from

a sensor. You can test this using a variable resistor connected to analog input pin 0. Use the

10

wiring and code shown earlier, except replace the loop function with this code:

void loop () {

i n t sensorValue = analogRead (A0) ; // read the analog in va lue

i n t pulseRate =

map(sensorValue , 0 , 1023 , 40 , 240) ; // conver t to b ea t s / minute

i n t pulseDelay = (60000 / pulseRate) ; // m i l l i s e c ond s to wai t between bea t s

show (smallHeart , 8 0) ; // show the sma l l hear t image f o r 100 ms

show (bigHeart , 160) ; // f o l l owed by the b i g hear t f o r 200 ms

delay (pulseDelay) ; // show noth ing between bea t s

}

This version calculates the delay between pulses using the map function to convert the sensor

value into beats per minute.

Circuit 5. Controlling an Array of LEDs by using MAX72xx

You have an 8x8 array of LEDs to control, and you want to minimize the number of required

Arduino pins. You can use a shift register to reduce the number of pins needed to control an

LED matrix. This solution uses the MAX7219 or MAX7221 LED driver chip to provide this

capability. Connect your Arduino, matrix, and MAX72xx as shown in �gure 9).

Figure 9: MAX72xx driving an 8x8 LED array.

This sketch is based on the MD_MAX72XX library, which can display text, draw objects on

the display, and perform various transformations on the display. You can �nd the library in the

Arduino Library Manager.

#inc lude <MD_MAX72xx. h>

// Pins to con t r o l 7219

11

#de f i n e LOAD_PIN 2

#de f i n e CLK_PIN 3

#de f i n e DATA_PIN 4

// Conf igure the hardware

#de f i n e MAX_DEVICES 1

#de f i n e HARDWARE_TYPE MD_MAX72XX: :PAROLA_HW

MD_MAX72XX mx =

MD_MAX72XX(HARDWARE_TYPE, DATA_PIN, CLK_PIN, LOAD_PIN, MAX_DEVICES) ;

void setup () { mx. begin () ; }

void loop () {

mx. c l e a r () ; // Clear the d i s p l a y

// Draw rows and columns

f o r (i n t r = 0 ; r < 8 ; r++) {

f o r (i n t c = 0 ; c < 8 ; c++) {

mx. s e tPo in t (r , c , t rue) ; // Ligh t each LED

delay (5 0) ;

}

// Cycle through a v a i l a b l e b r i g h t n e s s l e v e l s

f o r (i n t k = 0 ; k <= MAX_INTENSITY; k++) {

mx. c on t r o l (MD_MAX72XX: : INTENSITY, k) ;

de lay (1 0 0) ;

}

}

}

A matrix is created by passing the hardware type, pin numbers for the data, load, and clock

pins, and also the maximum number of devices (in case you are chaining modules). loop clears

the display, then uses the setPoint method to turn pixels on. After the sketch draws a row, it

cycles through the available brightness intensities and moves on to the next row.

The pin numbers shown here are for the green LEDs in the dual-color 8x8 matrix, available

from Adafruit (part number 458). This sketch will work with a single-color matrix as well,

since it only uses one of the two colors. If you �nd that your matrix is displaying text back-

ward or not in the orientation you expect, you can try changing the hardware type in the

line #define HARDWARE_TYPE MD_MAX72XX::PAROLA_HW from PAROLA_HW to one of GENERIC_HW,

ICSTATION_HW, or FC16_HW.

The resistor (marked R1 in �gure 9) is used to control the maximum current that will be used

to drive an LED. The MAX72xx datasheet has a table that shows a range of values. The green

LED in the LED matrix shown in �gure 9 has a forward voltage of 2 volts and a forward current

of 20 mA. Table of resistor values (from MAX72xx datasheet) indicates 28kΩ, but to add a little

12

safety margin, a resistor of 30kΩ or 33kΩ would be a suitable choice. The capacitors (0.1 µF and

10 µF) are required to prevent noise spikes from being generated when the LEDs are switched

on and o�.

13

NeoPixel LED

NeoPixels are intelligent RGB LED strips whose elements can be controlled individually.

They use WS2812, WS2811 or WS6812 drivers and use a single wire protocol to control the

colour of the embedded LED. The LEDs are integral with the controller body and they are sold

assembled in various formats: �exible, matrix, ring and as individual elements.

Each cell has �ve pins (�gure 10):

� VCC : 5V power supply for the control circuit;

� VDD: 5V power supply for the LED;

� VSS : ground;

� DIN : data input;

� DOUT : data output to be connected to the next LED in the chain.

Figure 10: Pinout of a single WS2812 module.

In NeoPixel products, connections are simpli�ed and only three pins are needed:

� 5V : for power supply;

� GND: for ground, to be shared with the Arduino;

� DIN : for data transmission.

Powering many LEDs requires a lot of power, so a power supply unit or battery with 5V and

capable of supplying all the current required by the LEDs must be used. Between 5V and GND,

it is advisable to put an electrolytic capacitor of a thousand microfarads to provide the inrush

required to switch on the various LEDs. The data line must be connected to the Arduino via a

470 Ω (�gure 11).

There is no limit to the number of LEDs a NeoPixel element can contain. The only limitations

are:

� the power consumed by the strip increases for each LED added (each LED requires a

maximum of 60 mA);

14

Figure 11: NeoPixel and Arduino interfacing.

� the response time increases as the number of LEDs increases;

� the memory required by the microcontroller increases as the number of LEDs increases.

Libraries exist to manage communication with the individual LEDs. The management library

we will see is called �Adafruit NeoPixel by Adafruit� and can be installed via the Arduino Library

Manager. To use the library, its de�nition must be included at the start of the sketch:

#inc lude <Adafruit_NeoPixel . h>

The initialisation of the Adafruit_NeoPixel object involves a number of parameters such as the

number of LEDs to be controlled, the pin used for communication and the driver model:

Adafruit_NeoPixel p i x e l s = Adafruit_NeoPixel (NUMPIXELS, PIN ,

NEO_RGB + NEO_KHZ800) ;

The driver type is speci�ed by combining various �ag with the following signicate:

� NEO_KHZ800: uses an 800 kHz transmission ratez;

� NEO_RGB: pixels connected in RGB mode.

The pixels are initialised with:

p i x e l s . begin () ;

It is possible to control the colour of each individual pixel using its index to set RGB values with:

p i x e l s . s e tP i x e lCo l o r (num_pixel , 0 , 1 50 , 0) ;

The colours are then transmitted with:

p i x e l s . show () ;

The library functions also include a function to set the brightness of all LEDs:

s t r i p . s e tBr i gh tne s s (1 0 0) ;

Circuit 6. Using the NeoPixel Strip

15

In this example, we will learn how to use Arduino to control the NeoPixel RGB LED strip

and how to use the Adafruit NeoPixel library to set up the NeoPixels. Figure 12 shows a very

simple example of connecting the NeoPixel LED strip to the Arduino board. To connect a strip

of NeoPixel LEDs to an Arduino board, hook up three wires:

� Power supply (+5V) goes to the plus of a power source.

� Ground (GND) goes to power source ground and should be additionally connected to the

board ground if powered from a separate power source.

� Data input (DIN) goes to any digital pin of the board.

Figure 12: Connecting a NeoPixel strip to the Arduino.

The Adafruit_NeoPixel library allows you to easily turn on a speci�c LED with a certain intensity

and color, or to turn it o�. Each LED can be controlled individually. Here we have four LEDs,

with the �rst one numbered 0. For example, to make it light up red, you would use the command:

strip.setPixelColor(0, 255, 0, 0); However, the LED will only respond to this command

if it is followed by strip.show().

#inc lude <Adafruit_NeoPixel . h>

#de f i n e LED_PIN 6

#de f i n e LED_COUNT 4

Adafruit_NeoPixel s t r i p (LED_COUNT, LED_PIN, NEO_GRB + NEO_KHZ800) ;

void setup () {

s t r i p . begin () ;

s t r i p . c l e a r () ;

s t r i p . show () ;

}

void loop () {

s t r i p . s e tBr i gh tne s s (5 0) ;

16

s t r i p . s e tP ix e lCo l o r (0 , 255 , 0 , 0) ;

s t r i p . show () ;

de lay (1000) ;

s t r i p . s e tP ix e lCo l o r (0 , 0 , 0 , 0) ;

s t r i p . s e tP ix e lCo l o r (1 , 0 , 255 , 0) ;

s t r i p . show () ;

de lay (1000) ;

s t r i p . s e tP ix e lCo l o r (1 , 0 , 0 , 0) ;

s t r i p . s e tP ix e lCo l o r (2 , 0 , 0 , 2 55) ;

s t r i p . show () ;

de lay (1000) ;

s t r i p . s e tP ix e lCo l o r (2 , 0 , 0 , 0) ;

s t r i p . s e tP ix e lCo l o r (3 , 255 , 255 , 255) ;

s t r i p . show () ;

de lay (1000) ;

s t r i p . s e tP ix e lCo l o r (3 , 0 , 0 , 0) ;

}

Circuit 7. Lighting a NeoPixel Ring

The NeoPixel ring is a circular arrangement of individually addressable RGB LEDs, allowing

for a wide range of color and brightness combinations.

In the circuit shown in Figure 13, the power supply is connected to the 5V pin, the GND pin

is connected to the ground of the circuit, and the DIN pin is connected to a digital pin on the

Arduino board.

Figure 13: Neopixel ring interfacing with Arduino.

As shown in the code below, de�ne the pin to which the NeoPixel data input is connected and

how many LEDs there are in our ring. The next step is to actually declare our NeoPixel object,

which we'll call ring. In our setup() function, we call the begin() function on that ring. Then,

we call show() to clear all the LEDs, and �nally, we set the brightness with setBrightness(),

which we call once at the beginning to tell our NeoPixel what the maximum brightness will be.

17

Next, let's start with a for loop that runs from 0 to the number of LEDs in our ring. Then,

we set the color of the individual LED in our ring. The function setPixelColor() takes the

arguments, in order: numLED, red, green, and blue. We'll enter i as the numLED so that the

for loop runs through each one. For the color, we use random values for red, green, and blue.

Call ring.show() afterwards to actually update the color in the ring. Finally, we add a delay of

50 milliseconds after applying each color to create a loading animation e�ect.

Next, we take the same loop and reverse it. To do this, we start from the last LED and count

backwards to 0. Then, we set the pixel color to 0, 0, 0, which means no color, and add those

same two lines..

#inc lude <Adafruit_NeoPixel . h>

#de f i n e LED_PIN 6

#de f i n e LED_COUNT 16

Adafruit_NeoPixel r i ng (LED_COUNT, LED_PIN, NEO_RGB + NEO_KHZ800) ;

void setup () {

r ing . begin () ;

r i ng . show () ;

r i ng . s e tBr i gh tne s s (5 0) ;

}

void loop () {

f o r (i n t i = 0 ; i < r ing . numPixels () ; i++){

r ing . s e tP i x e lCo l o r (i , random (255) , random (255) , random (2 5 5)) ;

r i ng . show () ;

de lay (5 0) ;

}

f o r (i n t i = r ing . numPixels ()=1; i >= 0 ; i==){

r ing . s e tP i x e lCo l o r (i , 0 , 0 , 0) ;

r i ng . show () ;

de lay (5 0) ;

}

}

Circuit 8. Controlling a NeoPixel Ring

This sketch uses the Adafruit Neopixels library (installed using the Arduino Library Manager)

to change LED colors based on readings from an analog pin. Figure 14 shows the connection for

a NeoPixel ring and a potentiometer to control the color:

#inc lude <Adafruit_NeoPixel . h>

18

Figure 14: Connecting a NeoPixel ring.

const i n t sensorPin = A0 ; // analog pin f o r sensor

const i n t ledPin = 6 ; // the pin the LED s t r i p i s connected to

const i n t count = 8 ; // how many LEDs in the s t r i p

// dec l a r e LED s t r i p

Adafruit_NeoPixel l e d s = Adafruit_NeoPixel (count , ledPin , NEO_GRB + NEO_KHZ800) ;

void setup () {

l e d s . begin () ; // i n i t i a l i z e LED s t r i p

f o r (i n t i = 0 ; i < count ; i++) {

l ed s . s e tP i x e lCo l o r (i , l e d s . Color (0 , 0 , 0)) ; // turn each LED o f f

}

l ed s . show () ; // r e f r e s h the s t r i p wi th the new p i x e l v a l u e s (a l l o f f)

}

void loop () {

s t a t i c unsigned i n t la s t_read ing = =1;

i n t read ing = analogRead (sensorPin) ;

i f (read ing != las t_read ing) { // I f the va lue has changed

// Map the analog read ing to the co l o r range o f the NeoPixel

unsigned i n t mappedSensorReading = map(reading , 0 , 1023 , 0 , 65535) ;

// Update the p i x e l s wi th a s l i g h t de lay to c r ea t e a sweeping e f f e c t

f o r (i n t i = 0 ; i < count ; i++) {

l ed s . s e tP i x e lCo l o r (

i , l e d s . gamma32(l e d s . ColorHSV(mappedSensorReading , 255 , 1 2 8))) ;

l e d s . show () ;

de lay (2 5) ;

}

la s t_read ing = read ing ;

19

}

}

You specify the number of LEDs in the strip count, the Arduino pin the data line is connected

to ledPin, and the type of LED strip you are using (in this case: NEO_GRB+NEO_KHZ800). To set

the color of an individual LED you use the led.setPixelColor method. You need to specify the

number of the LED (starting at 0 for the �rst one) and the desired color. To transfer data to the

LEDs you need to call led.show. You can alter multiple LED's values before calling led.show

to make them change together. Values not altered will remain at their previous settings. When

you create the Adafruit_NeoPixel object, all the values are initialized to 0.

The NeoPixel library includes its own function for converting a hue to an RGB value: ColorHSV.

The �rst argument is the hue, the second is the color saturation, and the third is brightness.

The gamma32 function performs a conversion on the output of ColorHSV to compensate between

the way that computers represent colors and the way that humans perceive them.

20

