

1

Erasmus+ KA210-VET

Small-scale partnerships in vocational

education and training

 Project Title: “Using Arduinos in Vocational Training”

Project Acronym: “UsingARDinVET”

Project No: “2023-1-RO01-KA210-VET-000156616”

***** UsingARDinVET GUIDEBOOK*****

2

“This project is Funded by the Erasmus+ Program of the European Union.

However, European Commission cannot be held responsible for any use which may be

made of the information contained therein”

3

COORDINATOR:

 LICEUL TEHNOLOGIC ELENA CARAGIANI (Tecuci, Romania)

PARTNERS:

Ahi Evran Mesleki Eğitim Merkezi (Ankara, Türkiye)

2 EK Peiraia (Piraeus / Greece)

Instituto De Educaiıón Secundaria "María Molıner" (SEGOVIA, Spain)

IPIAS G. GIORGI (Potenza, Italy)

4

Project Summary

“Using Arduinos in Vocational Training”

 Objectives:

The best way to learn something is by doing and experiencing it. The most important education-

training materials are the experimental sets in VET.

When the curriculum of VET schools are analyzed, it is seen that it is difficult to give Arduinos

education-training with these sets. We have prepared this project to overcome these problems, to

provide a more efficient environment and experimental sets for our students in Arduinos lesson,

and to ensure that learning is more permanent.

Implementation:

*5 Transnational meetings; 5 TPMs will be held during the two years project. The participants of

these meetings are project teams of the partners.

*Workshop of "Our Project is meeting with VET schools, electronic, ICT industries, labour

markets": The results, products, will be presented to the workshop participants.

5

-Creating project team and tools.

-Project Website.

-Training Kits and Set.

-UsingARDinVET Guidebook.

-Training Videos.

-Project DVD.

-5 Newsletters.

-Planting Erasmus trees.

Results:

-To change students’ perception of “Teaching, Learning, Using Arduinos in Vocational

Training”.

-To decrease absenteeism level in Arduinos' lessons.

-To make teachers learn innovative methodologies about Arduinos.

-To provide better educational services to their students.

-To create positive school climate and improve the learning environment.

-To improve Arduinos' workshops and lessons in a better way at schools.

-Increasing employment of graduates.

-Development of intercultural dialogues.

6

CONTENTS:

NO MODULE NAME PAGE

1

Introduction to Arduinos

7

2
Arduino Input/Output Module and Training Kit.

23

3
LCD Module and Training KIT

73

4

Keypad Module and Training KIT

96

5

Dot Matrix Display Module and Traning KIT

117

6

Motor Module and Training KIT

144

7

Sensor Module And Training KIT

170

8

Annexex

197

7

PROJECT

MODULES

and KITS of

UsingARDinVET

8

Erasmus+ KA210-VET

Small-scale partnerships in vocational

education and training

Project Title: “Using Arduinos in Vocational Training”

Project Acronym: “UsingARDinVET”

Project No: “2023-1-RO01-KA210-VET-000156616”

INTRODUCTION to ARDUINOS

(BASICS of ARDUINOS)

9

 INTRODUCING the ARDUINO

Arduino is a prototype platform (open-source) based on an easy-to-use hardware and software. It

consists of a circuit board, which can be programed (referred to as a microcontroller) and a

ready-made software called Arduino IDE (Integrated Development Environment), which is used

to write and upload the computer code to the physical board.

 On te other words, the Arduino is a small computer that you can program to read information

from the world around you and send commands to the outside world. All of this is possible

because you can connect several devices and components to the Arduino to do what you want.

You can do amazing projects with it, there is no limit for what you can do, and using your

imagination everything is possible!

In simple terms, the Arduino is a tiny computer system that can be programmed with your

instructions to interact with various forms of input and output. The current Arduino board model,

the Uno, is quite small in size compared to the average human hand.

What is an Arduino?

The Arduino is the board shown in the figure below.

Basically, it is a small development board with a brain (also known as a microcontroller) that

you can connect to electrical circuits. This makes it easy to read inputs – read data from the

outside – and control outputs - send a command to the outside. The brain of this board (Arduino

Uno) is an ATmega328p chip where you can store your programs that will tell your Arduino

what to do.

10

Exploring the Arduino Uno Board

In the figure below, you can see an Arduino board labeled. Let’s see what each part does.

∙ Microcontroller: the ATmega328p is the Arduino brain. Everything on the Arduino board is

meant to support this microcontroller. This is where you store your programs to tell the Arduino

what to do.

∙ Digital pins: Arduino has 14 digital pins, labeled from 0 to 13 that can act as inputs or outputs.

o When set as inputs, these pins can read voltage. They can only read two states: HIGH or LOW.

o When set as outputs, these pins can apply voltage. They can only apply 5V (HIGH) or 0V

(LOW).

∙ PWM pins: These are digital pins marked with a ~ (pins 11, 10, 9, 6, 5 and 3). PWM stands

for “pulse width modulation” and allows the digital pins output “fake” varying amounts of

voltage. You’ll learn more about PWM later.

∙ TX and RX pins: digital pins 0 and 1. The T stands for “transmit” and the R for “receive”.

The Arduino uses these pins to communicate with other electronics via Serial. Arduino also uses

these pins to communicate with your computer when uploading new code. Avoid using these

pins for other tasks other than serial communication, unless you’re running out of pins.

∙ LED attached to digital pin 13: This is useful for an easy debugging of the Arduino sketches.

11

∙ TX and RX LEDs: these leds blink when there are information being sent between the

computer and the Arduino.

∙ Analog pins: the analog pins are labeled from A0 to A5 and are often used to read analog

sensors. They can read different amounts of voltage between 0 and 5V. Additionally, they can

also be used as digital output/input pins like the digital pins.

∙ Power pins: the Arduino provides 3.3V or 5V through these pins. This is really useful since

most components require 3.3V or 5V to operate. The pins labelled as “GND” are the ground

pins.

∙ Reset button: when you press that button, the program that is currently being run in your

Arduino restarts. You also have a Reset pin next to the power pins that acts as reset button.

When you apply a small voltage to that pin, it will reset the Arduino.

∙ Power ON LED: will be on since power is applied to the Arduino.

∙ USB jack: you need a male USB A to male USB B cable (shown in figure below) to upload

programs from your computer to your Arduino board. This cable also powers your Arduino.

∙ Power jack: you can power the Arduino through the power jack. The recommended input

voltage is 7V to 12V. There are several ways to power up your Arduino: for example;

rechargeable batteries, disposable batteries, wall-warts and solar panel.

Arduino Features

Arduino Uno; has Atmel Atmega 328P microcontroller and also has USB connection input,

power jack input, reset buton.. Arduino has everything that a microcontroller should have.

12

Microcontroller

Atmega328P

Working voltage

5V

Input voltage (recommended)

7-12V

Input voltage (limit)

6-20V

Digital input / output pins

14

PWM input / output pins

6

Analog input pin

6

Dc current per input / output pin

20mA

DC current for 3.3V

50mA

Flash memory

32 KB

Sram

2KB

EEPROM

1 KB

Clock Speed 16 MHz

13

Length

68.6 mm

Width

53.4 mm

Weight

25 g

Figure: Arduino Uno Features

Figure:

Atmega 328P Pins

14

OTHER TYPES of ARDUINOS

ARDUINO MEGA

It has the Atmega 2560 microcontroller on it.

It has 54 digital input-output pins, 16 analog

inputs, 4 hardware serial ports, and a 16 mhz

crystal oscillator. It is powered by both USB

and DC adapter. Generally, the card, which

has the same features as the Arduno UNO, is

preferred in larger projects because it has

more pins.

ARDUINO LILYPAD

Lilypad is designed to be sewn on dresses and

fabrics. In this way, it can be used in interesting

projects that can be designed to be wearable. It

has an Atmega 168V microcontroller on it.

ARDUINO ETHERNET

It has an Ethernet chip and an Ethernet port for

making internet-connected projects. There is also

an SD-Card slot on the card, which has the Atmega

328 model as a microcontroller.

ARDUINO BLUETOOTH

There is a Bluetooth module on Arduino BT, ideal

for making applications communicating with the

Bluetooth protocol. This module can also be used

to program Arduino via Bluetooth.

15

ARDUINO MİNİ

It is an Arduino model designed to be operated on

a breadboard or integrated into another design.

There is Atmega 168 or Atmega 328 model

microcontroller on it. It is ideal for applications

where small size is particularly important.

ARDUINO NANO

It is a very small and designed model suitable for

applications on the circuit board, and has an

Atmega 328 or Atmega 168 microcontroller,

voltage regulator, serial to USB converter chip, DC

voltage input port and mini USB port.

ARDUINO LEONARDO

It is one of the Arduino boards, which contains an

Atmega 32u4 microcontroller on the Arduino

Leonardo and does not require an additional chip

for USB connection. With 20 digital inputs /

outputs and 12 analog inputs, the microcontroller

on the board has a surface mount cover. Thanks to

its USB connection capabilities, Leonardo can be

connected to the computer as a mouse or

keyboard.

ARDUINO ESPLORA

16

Esplora is an Arduino board that contains various

sensors, unlike the others. Thanks to the sensors on the

card, it is possible to perform many applications

without the need for other additions and excessive

electronic knowledge. Esplora is equipped with a slide

potentiometer, light and sound sensor, temperature

sensor, sound generator, 2-axis mini analog joystick, 3-

color LED and an accelerometer. Esplora is also

equipped with Atmega 32U4 AVR microcontroller like

Leonarda. Applications that can act as a mouse or

keyboard can be developed when connected to a

computer with its micro USB connection.

Downloading the Arduino IDE

The Arduino IDE (Integrated Development Environment) is where you develop your programs

that will tell the Arduino what to do.

To install the Arduino IDE for Windows, we have to follow instructions.

You can load new programs onto the main chip, the ATmega328p, via USB using the Arduino

IDE.

To download the Arduino IDE, please click on the following link:

https://www.arduino.cc/en/Main/Software.

Select which Operating System you’re using and download it. After our Arduino IDE software

is downloaded, we need to unzip the folder.

17

Inside the folder, we can find the application icon with an infinity label (application.exe).

Double-click the icon to start the IDE. Then, simply follow the installation wizard to install the

Arduino IDE.

18

Arduino IDE Window to Write Programs

When you first open the Arduino IDE, you should see something similar to the figure below.

As shown in Figure below, the Arduino IDE resembles a simple word processor. The IDE is

divided into three main areas: the command area, the text area, and the message window area.

 Menu Items

 As with any word processor or text editor, you can click one of the menu items to display its

various options.

File: Contains options to save, load, and print sketches; a thorough set of example sketches to

open; as well as the Preferences submenu.

Edit: Contains the usual copy, paste, and search functions common to any word processor

Sketch: Contains the function to verify your sketch before uploading to a board, and some

sketch folder and import options.

Tools: Contains a variety of functions as well as the commands to select the Arduino board type

and USB port.

Help: Contains links to various topics of interest and the version of the IDE.

19

What the Sketch is

An Arduino sketch is a set of instructions that you create to accomplish a particular task; in other

words, a sketch is a program.

 The sketch is nothing more than a set of instructions for the Arduino to carry out. Sketches

created using the Arduino IDE are saved as .pde files. To create a sketch, you need to make the

three main parts: Variable declaration, the Setup function, and the main Loop function.

Arduino IDE Toolbar Buttons

Below the menu toolbar are six icons. Mouse over each icon to display its name. The icons, from

left to right, are as follows:

Verify (Compile): Click this to check that the Arduino sketch is valid and doesn’t contain any

programming mistakes.

New: Click this to open a new blank sketch in a new window.

Open: Open Click this to open a saved sketch.

Save: Click this to save the open sketch. If the sketch doesn’t have a name, you will be

prompted to create one.

Upload: Click this to verify and then upload your sketch to the Arduino board.

Serial Monitor: Click this to open a new window for use in sending and receiving data between

your Arduino and the IDE.

Connecting your Arduino

Connect your Arduino UNO to your computer via USB.

After connecting your Arduino with a USB cable, you need to make sure that the Arduino IDE

has selected the right board.

In our case, we’re using Arduino Uno, so we should go to Tools Board: Arduino/Genuino

Uno.

20

Then, you should select the serial port where your Arduino is connected to. Go to Tools Port

and select the right port.

21

Uploading an Arduino Sketch

To show you how to upload code to your Arduino board, we’ll show you a simple

example. This is one of the most basic examples – it consists in blinking the

on-board LED or digital pin 13 every second.

1. Open your Arduino IDE.

2. Go to File Examples 01.Basics Blink

By default, the Arduino IDE comes pre-configured for the Arduino UNO. Click the Upload

button and wait a few seconds.

After a few seconds, you should see a Done uploading message.

22

This code simply blinks the on-board LED on your Arduino UNO (highlighted with red color).

You should see the little LED turn on for one second, and turn off for another second repeatedly.

Control an Output and Read an Input

An Arduino board contains digital pins, analog pins and PWM pins.

Difference between digital, analog and PWM

In digital pins, you have just two possible states, which are on or off. These can also be referred

as High or Low, 1 or 0 and 5V or 0V.

For example, if an LED is on, then, its state is High or 1 or 5V. If it is off, you’ll have Low, or 0

or 0V.

In analog pins, you have unlimited possible states between 0 and 1023. This allows you to read

sensor values. For example, with a light sensor, if it is very dark, you’ll read 1023, if it is very

bright you’ll read 0 If there is a brightness between dark and very bright you’ll read a value

between 0 and 1023.

PWM pins are digital pins, so they output either 0 or 5V. However these pins can output “fake”

intermediate voltage values between 0 and 5V, because they can perform “Pulse Width

Modulation” (PWM). PWM allows to “simulate” varying levels of power by oscillating the

output voltage of the Arduino.

23

Controlling an output

To control a digital output you use the digitalWrite() function and between brackets you write,

the pin you want to control, and then HIGH or LOW.

To control a PWM pin you use the analogWrite() function and between brackets you write the

pin you want to control and a number between 0 and 255.

Reading an input

To read an analog input you use the function analogRead() and for a digital input you use

digitalRead().

Note: The best way for you to learn Arduino is practising. So, make many projects and start

building something.

24

Erasmus+ KA210-VET

Small-scale partnerships in vocational

education and training

Project Title: “Using Arduinos in Vocational Training”

Project Acronym: “UsingARDinVET”

Project No: “2023-1-RO01-KA210-VET-000156616”

Arduino Input/Output Module and Training Kit

25

Planning Our Projects

When starting our first projects, you might be tempted to write your sketch immediately after

you’ve come up with a new idea. But before you start writing, a few basic preparatory steps are

in order. After all, your Arduino board isn’t a mind-reader; it needs precise instructions, and

even if these instructions can be executed by the Arduino, the results may not be what you

expected if you overlooked even a minor detail.

Whether you are creating a project that simply blinks a light or an automated model railway

signal, a detailed plan is the foundation of success. When designing your Arduino projects,

follow these basic steps:

1. Define your objective. Determine what you want to achieve.

2. Write your algorithm. An algorithm is a set of instructions that describes how to accomplish

your project. Your algorithm will list the steps necessary for you to achieve your project’s

objective.

3. Select your hardware. Determine how it will connect to the Arduino.

4. Write your sketch. Create your initial program that tells the Arduino what to do.

5. Wire it up. Connect your hardware, circuitry, and other items to the Arduino board.

6. Test and debug. Does it work? During this stage, you identify errors and find their causes,

whether in the sketch, hardware, or algorithm.

The more time you spend planning your project, the easier time you’ll have during the testing

and debugging stage.

Basic structure of a sketch

 The Arduino program is called as “sketch”. A sketch can be divided in three parts.

26

1. Name variable:

In the first part elements of the program are named. This part is not absolutely necessary.

2. Setup (absolutely necessary for the program):

The setup will be performed only once. Here you are telling the program for example what

Pin (slot for cables) should be an input and what should be an output on the boards.

Defined as Output: The pin should put out a voltage. For example: With this pin a LED is

meant to light up.

Defined as an Input: The board should read out a voltage. For example: A switch is

actuated. The board recognized this, because it gets a voltage on the Input pin.

3. Loop (absolutely necessary for the program):

This loop part will be continuously repeated by the board. It assimilates the sketch from

beginning to end and starts again from the beginning and so on.

Further Syntax Rules

It is necessary to pay attention to these rules while writing Arduino programs. Otherwise, our

program will fail.

; (Semicolon):

; (Semicolon) is used to end a statement. Forgetting to end a line in a semicolon will result in a

compiler error.

Example: int a=13;

{} (Curly Braces):

Curly braces are a major part of the Arduino programming language. They are used in several

different constructs, and this can sometimes be confusing for beginners. An opening curly brace

"{" must always be followed by a closing curly brace "}".

The main uses of curly braces: Functions, Loops, Conditional statements

Example:

 void myfunction(datatype argument)

{ statements(s) }

// (Single line comment) and /* */ (Multi-line comment):

about:blank
about:blank
about:blank
about:blank
about:blank

27

 These are lines in the program that are used to inform yourself or others about the way the

program works. They are ignored by the compiler, and not exported to the processor, so they

don't take up any space on the Atmega chip.

Comments only purpose are to help you understand (or remember) how your program works or

to inform others how your program works. There are two different ways of marking a line as a

comment:

Example:

x = 5; // This is a single line comment. Anything after the slashes is a comment

// to the end of the line

x = 5; /*This is a multi-line comment. ……

This is the end of a multi-line comment. */

#define:

#define allows the programmer to give a name to a constant value before the program is

compiled. Defined constants in arduino don't take up any program memory space on the chip. In

general, the const keyword is preferred for defining constants and should be used instead of

#define.

Example:

#define ledPin 3 // The compiler will replace any mention of ledPin with the value 3 at

compile time.

#include:

 #include is used to include outside libraries in your sketch. This gives the programmer access to a

large group of standard C libraries (groups of pre-made functions), and also libraries written

especially for Arduino.

Example:

#include <servo.h>

Arduino - Data Types

Data types are used for declaring variables or functions of different types. The type of a variable

determines how much space it occupies in the storage and how the bit pattern stored is interpreted.

 Expressions that are used to store any information in memory and can change the value during

program flow are called variables. Variables can be numbers, characters, or logical expressions.

about:blank
about:blank
about:blank

28

The appropriate data type should be selected according to the variable type. A certain area is

allocated according to the type of data, used in defining the variable in memory.

The following table provides all the data types that you will use during Arduino programming.

Type Contains

boolean can contain either true or false

char -128 to 127

byte 0 to 255

unsigned char 0 to 255

int -32,768 to 32,767

unsigned int 0 to 65,535

word (same as unsigned int)

long (or long int) -2,147,483,648 to 2,147,483,647

unsigned long 0 to 4,294,967,295

float -3.4028235E+38 to 3.4028235E+38

double (same as float)

 Arduino - Variables & Constants

While defining the variable, the name of the variable, the value of the variable and the appropriate

data type for the variable must be determined.

 The definition is made as seen in the example below:

 int LED =12;

Here: int=data type LED=variable name 12=variable value

Variables, which Arduino uses, have a property called scope. A scope is a region of the program

and there are three places where variables can be declared. They are:

● Inside a function or a block, which is called local variables.

● In the definition of function parameters, which is called formal parameters.

29

● Outside of all functions, which is called global variables.

A constant is a variable qualifier that modifies the behavior of the variable, making a variable

"read-only". This means that the variable can be used just as any other variable of its type, but its

value cannot be changed. You will get a compiler error if you try to assign a value to

a const variable.

Constants defined with the const keyword obey the rules of variable scoping that govern other

variables. This, and the pitfalls of using #define, makes the const keyword a superior method for

defining constants and is preferred over using #define.

Example:

const float pi = 3.14;

Notes:

#define or const: You can use either const or #define for creating numeric or string constants.

For arrays, you will need to use const. In general const is preferred over #define for defining

constants.

Arduino – Operators

An operator is a symbol that tells the compiler to perform specific mathematical or logical

functions. In Arduinos, the following types of operators may be used.

Arithmetic Operators:

Assume variable A holds 10 and variable B holds 20 then −

 Operator name Operator simple Example

assignment operator = A = B

addition + A + B will give 30

subtraction - A - B will give -10

https://www.arduino.cc/reference/en/language/variables/variable-scope-qualifiers/scope
https://www.arduino.cc/reference/en/language/structure/further-syntax/define
https://www.arduino.cc/reference/en/language/structure/further-syntax/define
https://www.arduino.cc/reference/en/language/structure/further-syntax/define
https://www.arduino.cc/reference/en/language/structure/further-syntax/define
https://www.arduino.cc/reference/en/language/variables/data-types/array
https://www.arduino.cc/reference/en/language/structure/further-syntax/define

30

multiplication * A * B will give 200

division / B / A will give 2

modulo % B % A will give 0

Comparison Operators:

Assume variable A holds 10 and variable B holds 20 then −

Operator name Operator symble Example

equal to == (A == B) is not true

not equal to != (A != B) is true

less than < (A < B) is true

greater than > (A > B) is not true

less than or equal to <= (A <= B) is true

greater than or equal to >= (A >= B) is not true

Boolean Operators

Assume variable A holds 10 and variable B holds 20 then −

Operator name Operator simple Example

and && (A && B) is true

or || (A || B) is true

not ! !(A && B) is false

31

Bitwise Operators

Assume variable A holds 60 and variable B holds 13 then −

Operator name Operator

simple

Example

and & (A & B) will give 12 which is 0000 1100

or | (A | B) will give 61 which is 0011 1101

xor ^ (A ^ B) will give 49 which is 0011 0001

not ~ (~A) will give -60 which is 1100 0011

shift left << A << 2 will give 240 which is 1111 0000

shift right >> A >> 2 will give 15 which is 0000 1111

Arduino - I/O Functions (Commands)

Functions allow structuring the programs to perform individual tasks. The typical case for

creating a function is when one needs to perform the same action multiple times in a program.

They will become clearer when we show actual program examples in circuits and Arduino

programmes below. To help explain the various command functions, we’ve broken them down

into separate Commands

The pins on the Arduino board can be configured as either inputs or outputs. We will explain the

functioning of the pins in those modes. It is important to note that a majority of Arduino analog

pins, may be configured, and used, in exactly the same manner as digital pins.

pinMode() Function:

The pinMode() function is used to configure a specific pin to behave either as an input or an

output. It is possible to enable the internal pull-up resistors with the mode INPUT_PULLUP.

Syntax: pinMode(pin, mode)

 Void setup () {

32

 pinMode (pin , mode);

 }

Parameters:

pin: the Arduino pin: number to set the mode of.

mode: INPUT, OUTPUT, or INPUT_PULLUP.

Examples:

pinMode(13, OUTPUT); // sets the digital pin 13 as output

pinMode(5, INPUT); // sets the digital pin 5 as input

 digitalWrite() Function:

The digitalWrite() function is used to write a HIGH or a LOW value to a digital pin. If the pin

has been configured as an OUTPUT with pinMode(), its voltage will be set to the corresponding

value: 5V for HIGH, 0V (ground) for LOW. If the pin is configured as an INPUT, digitalWrite()

will enable (HIGH) or disable (LOW) the internal pullup on the input pin. It is recommended to

set the pinMode() to INPUT_PULLUP to enable the internal pull-up resistor.

If you do not set the pinMode() to OUTPUT, and connect an LED to a pin, when calling

digitalWrite(HIGH), the LED may appear dim. Without explicitly setting pinMode(),

digitalWrite() will have enabled the internal pull-up resistor, which acts like a large current-

limiting resistor.

Syntax:

 digitalWrite (pin ,value);

pin: the number of the pin whose mode you wish to set

value:HIGH (1), or LOW(0).

Example:

 digitalWrite(LED, HIGH); // turn on led

 digitalWrite(LED, LOW); // turn off led

https://www.arduino.cc/en/Reference/PinMode
https://www.arduino.cc/en/Reference/PinMode

33

digitalRead()Function:

 The digitalRead() function reads the value from a specified digital pin, either HIGH or LOW.

Syntax: digitalRead(pin)

pin: the Arduino pin number you want to read.

Examples:

 val = digitalRead(inPin); // read the input pin

Note: The analog input pins can be used as digital pins, referred to as A0, A1, etc.

delay() Function:

The dalay() function pauses the program for the amount of time (in milliseconds) specified as

parameter. (There are 1000 milliseconds in a second.)

Syntax: delay(ms):

ms: the number of milliseconds to pause. Allowed data types: unsigned long.

Examples:

 delay(1000); // waits for 1 second

 delay(2000); // waits for 2 seconds

analogWrite() Function:

 The analogWrite() function writes an analog value (PWM wave) to a pin. It can be used to light

a LED at varying brightnesses or drive a motor at various speeds. After a call to analogWrite(),

the pin will generate a steady rectangular wave of the specified duty cycle until the next call

to analogWrite() (or a call to digitalRead() or digitalWrite()) on the same pin.

Examples:

Sets the output to the LED proportional to the value read from the potentiometer.

val = analogRead(analogPin); // read the input pin

 analogWrite(ledPin, val / 4); // analogRead values go from 0 to 1023, analogWrite values from

0 to 255

http://arduino.cc/en/Tutorial/PWM

34

analogRead() Function

Arduino is able to detect whether there is a voltage applied to one of its pins and report it through

the digitalRead() function. There is a difference between an on/off sensor (which detects the

presence of an object) and an analog sensor, whose value continuously changes. In order to read

this type of sensor, we need a different type of pin.

In the lower-right part of the Arduino board, you will see six pins marked “Analog In”. These

special pins not only tell whether there is a voltage applied to them, but also its value. By using

the analogRead() function, we can read the voltage applied to one of the pins.

This function returns a number between 0 and 1023, which represents voltages between 0 and 5

volts. For example, if there is a voltage of 2.5 V applied to pin number 0, analogRead(0) returns

512.

Syntax: analogRead(pin);

pin: the number of the analog input pin to read from 0 to 5.

Example:

val = analogRead(analogPin); // read the input pin

Serial.println(val); // debug value

if Function:

The if statement checks for a condition and executes the following statement or set of statements

if the condition is 'true'.

Syntax:

if (condition) {

//statement(s)

}

condition: a boolean expression (i.e., can be true or false).

Examples: (The brackets may be omitted after an if statement. If this is done, the next line

(defined by the semicolon) becomes the only conditional statement.

if (x > 120) digitalWrite(LEDpin, HIGH);

if (x > 120)

digitalWrite(LEDpin, HIGH);

if (x > 120) {digitalWrite(LEDpin, HIGH);}

if (x > 120) {

 digitalWrite(LEDpin1, HIGH);

 digitalWrite(LEDpin2, HIGH);

35

}

 // all are correct

if-else Command:

The if…else allows greater control over the flow of code than the basic if statement, by allowing

multiple tests to be grouped. An else clause (if at all exists) will be executed if the condition in

the if statement results in false. The else can proceed another if test, so that multiple, mutually

exclusive tests can be run at the same time.

Each test will proceed to the next one until a true test is encountered. When a true test is found,

its associated block of code is run, and the program then skips to the line following the entire

if/else construction. If no test proves to be true, the default else block is executed, if one is

present, and sets the default behavior. An unlimited number of such else if branches are allowed.

 Syntax:

if (condition is TRUE) {

 // do Thing A

}

else

 //if NOT, do Thing B

}

if (condition1) {

 // do Thing A

}

else if (condition2) {

 // do Thing B

}

else {

 // do Thing C

}

Examples: (Below is an extract from a code for temperature sensor system.)

if (temperature >= 70) {

 // Danger! Shut down the system.

}

else if (temperature >= 60) { // 60 <= temperature < 70

 // Warning! User attention required.

}

else { // temperature < 60

 // Safe! Continue usual tasks.

}

https://www.arduino.cc/reference/en/language/structure/control-structure/if

36

 for Command:

The for statement is used to repeat a block of statements enclosed in curly braces. An increment

counter is usually used to increment and terminate the loop. The for statement is useful for any

repetitive operation, and is often used in combination with arrays to operate on collections of

data/pins.

Syntax:

for (initialization; condition; increment) {

 // statement(s);

}

Parameters:

initialization: happens first and exactly once.

condition: each time through the loop, condition is tested; if it’s true, the statement block, and

the increment is executed, then the condition is tested again. When the condition becomes false,

the loop ends.

increment: executed each time through the loop when condition is true.

Examples:

 for (int i = 0; i <= 255; i++) {

 analogWrite(PWMpin, i); }

for (int x = 2; x < 100; x = x * 1.5) {

 println(x); }

 for (int i = 0; i > -1; i = i + x) {

 analogWrite(PWMpin, i); }

 switch...case Command

Like if statements, switch/ case controls the flow of programs by allowing programmers to

specify different code that should be executed in various conditions. In particular, a switch

statement compares the value of a variable to the values specified in case statements. When a

case statement is found whose value matches that of the variable, the code in that case statement

is run.

The break keyword exits the switch statement, and is typically used at the end of each case.

Without a break statement, the switch statement will continue executing the following

expressions ("falling-through") until a break, or the end of the switch statement is reached.

https://www.arduino.cc/reference/en/language/variables/constants/constants
https://www.arduino.cc/reference/en/language/variables/constants/constants
https://www.arduino.cc/reference/en/language/variables/constants/constants
https://www.arduino.cc/reference/en/language/structure/control-structure/if
https://www.arduino.cc/reference/en/language/structure/control-structure/switchcase
https://www.arduino.cc/reference/en/language/structure/control-structure/break

37

Syntax:

switch (var) {

 case label1:

 // statements

 break;

 case label2:

 // statements

 break;

 default:

 // statements

 break;

}

Example Code:
switch (var) {

 case 1:

 //do something when var equals 1

 break;

 case 2:

 //do something when var equals 2

 break;

 default:

 // if nothing else matches, do the default

 // default is optional

 break;

}

var: a variable whose value to compare with various cases. Allowed data types: int, char.

label1, label2: constants. Allowed data types: int, char.

Note:

 Arduino circuits are shown in two ways;

1-) Breadboard view

2-) Schematic view

 1-

) Breadboard view 2-) Schematic view

We will use Breadboard view which is used more.

Enough! Let’s make something!

38

 Circuits of Arduino Button and LED Module Kit

Most pins on the Arduino can be configured as input or output. The Button and LED Module Kit

is first training KIT of the UsingARDinVET to make students learn I/O systems of Arduinos.

So, it can be named as I/O Arduino training KIT. In this Training Kit, as shown as below, 6

buttons are connected to Arduino as inputs. And a buzzer, a 2-pin connector and 6 LEDs are

connected as outputs.

 As students can use this training kit to learn I/O systems of Arduinos, this training kit can

maket them test Arduino circuit more easy. Also, they can use a breadboard to test Arduino

circuits and experiments.

Figure: Open Circuit of Button and LED Module Kit

39

Figure: PCB Schema of Button and LED Module Kit

40

Sample Arduio Circuits and Programs

Circuit 1:

Circuit title: LED flashing Program

Circuit description: An LED is connected to 13th pin of the Arduino. The LED is flashed

continuously with 1second interval.

1-) Breadboard view 2-) Schematic view

/* LED flashing Program, Switching a LED on and off */

int led = 7; // integer variable led is declared

void setup() { // the setup() method is executed only once

pinMode(led, OUTPUT); // the led PIN is declared as digital output

}

void loop() { // the loop() method is repeated

digitalWrite(led, HIGH); // switching on the led

delay(1000); // stopping the program for 1000 milliseconds

digitalWrite(led, LOW); // switching off the led

delay(1000); // stopping the program for 1000 milliseconds

}

41

Circuit 2:

Circuit title: Flip-Flop , 2 LEDs flashing Program

Circuit description: 2 LEDs blink sequentially with 2 second intervals.

/* Flip Flop */

int greenLED=5; // Pin where the green LED is attached

int redLED=7; // Pin where the red LED is attached

void setup() {

pinMode(greenLED, OUTPUT); // green LED pin is initialised as OUTPUT

pinMode(redLED, OUTPUT); // red LED pin is initialised as OUTPUT

 }

void loop(){

digitalWrite(greenLED, HIGH); // switch on green LED

digitalWrite(redLED, LOW); // switch off red LED

pause(2000);

digitalWrite(greenLED, LOW); // switch off green LED

digitalWrite(redLED, HIGH); // switch on red LED

pause(2000);

 }

42

 Circuit 3:

Circuit title: Traffic Lights

Circuit description: In this Project, We are going to build a traffic lights system. There are 3

LEDs with different colors (green, yellow and red).

/* Traffic Lights */

int redLED = 7;

int yellowLED =6;

int greenLED = 5;

void setup() { // here, we are initializing our pins as outputs

pinMode(redLED, OUTPUT);

pinMode(yellowLED, OUTPUT);

pinMode(greenLED, OUTPUT);

}

void loop() {

digitalWrite(redLED, HIGH); // redLED is ON for 9 seconds

43

digitalWrite(yellowLED, LOW);

digitalWrite(greenLED, LOW);

delay(9000);

digitalWrite(redLED, HIGH); // redLED and yellowLED are ON for 2seconds

digitalWrite(yellowLED, HIGH);

digitalWrite(greenLED, LOW);

delay(2000);

digitalWrite(redLED, LOW); // greenLED is ON for 9 seconds

digitalWrite(yellowLED, LOW);

digitalWrite(greenLED, HIGH);

delay(9000);

digitalWrite(redLED, LOW); // Again, yellowLED is ON for 2seconds

digitalWrite(yellowLED, HIGH);

digitalWrite(greenLED, LOW);

delay(2000);

/* The loop starts again */

 }

Circuit 4:

Circuit title: RGB LED APPLICATION

Circuit Explanation: The RGB LED is the 3 LEDs, connected in common, placed in a single

case. It is possible to control the light intensity of three colors digitally. In addition, desired

colors can be obtained by using the PWM technique.

44

/* We will flash each color of RGB LED in 1 second intervals. If we want to display white light,

we need to turn on all the LEDs..*/

const int BlueLed=11; // we connect the blue led to pin-11

const int GreenLed=10; // we connect the green led to pin-10

const int RedLed=9; // we connect the red led to pin-11

// We assign the pins to which the LEDs are connected as outputs.

void setup() {

pinMode(BlueLed,OUTPUT);

pinMode(GreenLed,OUTPUT);

pinMode(RedLed,OUTPUT); }

// The loop starts here.

void loop() {

digitalWrite(BlueLed, LOW); // RedLed is ON.

digitalWrite(GreenLed, LOW);

digitalWrite(RedLed, HIGH);

delay(1000);

 digitalWrite(BlueLed, LOW); // GreenLed is ON.

digitalWrite(GreenLed, HIGH);

digitalWrite(RedLed, LOW);

delay(1000);

 digitalWrite(BlueLed, HIGH); // BlueLed is ON.

digitalWrite(GreenLed, LOW);

digitalWrite(RedLed, LOW);

delay(1000);

// We display the white color by activating all the leds.

digitalWrite(BlueLed, HIGH);

digitalWrite(GreenLed, HIGH);

digitalWrite(RedLed, HIGH);

delay(1000);

}

45

Circuit 5:

Circuit title: Reading Analog Voltage, Reading the Value From Potentiometer

Circuit Explanation: Here, we learn how to read an analog input on analog pin-0. The input is

converted from analogRead() into voltage, and printed out to the serial monitor of the Arduino

IDE.

Potentiometer: A potentiometer (or pot) is a simple electro-mechanical

transducer. It converts rotary or linear motion from the input operator into a

change of resistance. This change is (or can be) used to control anything

from the volume of a hi-fi system to the direction of a huge container ship.

/* ReadAnalogVoltage : Reads an analog input on pin 0, converts it to voltage, and prints the

result to the serial monitor.

Graphical representation is available using serial plotter (Tools > Serial Plotter menu).

Attach the center pin of a potentiometer to pin A0, and the outside pins to +5V and ground. */

// the setup routine runs once when you press reset:

46

void setup() {

 // initialize serial communication at 9600 bits per second:

 Serial.begin(9600); }

// the loop routine runs over and over again forever:

void loop() {

 // read the input on analog pin 0:

 int sensorValue = analogRead(A0);

 // print out the value you read:

 Serial.println(sensorValue);

 delay(1000); // delay between reads for stability

}

47

Circuit 6:

Circuit title: Using buttons on Arduinos

Circuit Explanation: When pressing a pushbutton attached to pin 7, the button turns on and

off a (LED), connected to digital pin 4,

/* Button Turns on and off a light emitting diode(LED) connected to digital pin 4, when

pressing a pushbutton attached to pin 7. */

void setup()

{

 pinMode(4, OUTPUT); // pin-4 is output

 pinMode(7, INPUT); // pin7 is input. 7

}

void loop()

{

 if (digitalRead(7) == HIGH) // If pin7 is high,

 digitalWrite(4, HIGH); // Led is ON,

 if (digitalRead(7) == LOW) // If pin7 is low,

 digitalWrite(4, LOW); // Led is OFF.

}

NOTE: IF-THEN command also can be used for connecting buttons to Inputs pins of

Arduinos. These connection can be done in two differents ways. Pull_Up connection and Pull-

down connection.

48

Figure: Switches or Butons that can be used for the IF…THEN command

Circuit 7:

Circuit title: Using ELSE command on Arduinos

Circuit Explanation: When pressing a pushbutton attached to pin 7, the button turns on and

off a (LED), connected to digital pin 4. Also, We will learn to determine the pins with the "int"

variable.

 int led = 4;

int buton =7;

void setup()

{

 pinMode(led, OUTPUT);

 pinMode(buton, INPUT);

49

}

void loop()

{

 if (digitalRead(buton) == HIGH) // The button is ON,

 digitalWrite(led, HIGH); // Led is ON

 else // If not,

 digitalWrite(led, LOW); // Led is OFF.

}

50

Circuit 8:

Circuit title: 2 Buttons versus 1 LED

Circuit Explanation: One buton turns on the Led, another buton turn off the Led.

/* 2 buttons versus 1 LED

Buttons are connected with 10K resistors in series. */

int led = 4; // The pin-4 is assigned as "led"

int button1 = 7; // The pin-7 is assigned as "button1"

int button2 = 13; // The pin-13 is assigned as "button2"

void setup()

{

 pinMode(led, OUTPUT); // led=Output

 pinMode(button1, INPUT); // button1=Input

 pinMode(button2, INPUT); // button2=Input

}

void loop()

{

 if (digitalRead(button1) == HIGH) // IF "button1" is ON (active),

 digitalWrite(led, HIGH); // Led is ON.

 if (digitalRead(button2) == HIGH) // IF "button2" is ON (active),

 digitalWrite(led, LOW); // Led is OFF. }

51

HOW-TO Use the ARDUINO SERIAL MONITOR

The Arduino IDE has a feature that can be a great help in debugging sketches or controlling

Arduino from your computer's keyboard.

The Serial Monitor is a separate pop-up window that acts as a separate terminal that

communicates by receiving and sending Serial Data. See the icon on the far right of the image

here .

Serial Data is sent over a single wire (but usually travels over USB in our case) and consists of a

series of 1's and 0's sent over the wire. Data can be sent in both directions (In our case on two

wires).

You will use the Serial Monitor to debug Arduino Software Sketches or to view data sent by a

working Sketch. You must have an Arduino connected by USB to your computer to be able to

activate the Serial Monitor.

Open the Serial Monitor by clicking on the Serial Monitor box in the IDE. It should look like the

screenshot below. Make SURE the baud (speed) is set to 9600. It is located in the bottom right

corner. (The important thing is that it is set the same in our program and here. Since the default

here is 9600, we set our

52

 Main Commands to Use Serial Monitor

 Serial.begin(); Sets the data rate in bits per second (baud) for serial data transmission. For

communicating with Serial Monitor, make sure to use one of the baud rates listed in the menu at

the bottom right corner of its screen. You can, however, specify other rates - for example, to

communicate over pins 0 and 1 with a component that requires a particular baud rate.

Syntax: Serial.begin(speed);

Example: Serial.begin(9600);

Serial.print(); Prints data to the serial port as human-readable ASCII text. This command can

take many forms. Numbers are printed using an ASCII character for each digit. Floats are

similarly printed as ASCII digits, defaulting to two decimal places. Bytes are sent as a single

character. Characters and strings are sent as is. For example:

 Serial.print(78;) gives "78"

 Serial.print('N'); gives "N"

 Serial.print("Hello Arduino"); gives "Hello Arduino"

Serial.println(); Prints data to the serial port as human-readable ASCII text followed by a

carriage return character (ASCII 13, or '\r') and a newline character (ASCII 10, or '\n'). This

command takes the same forms as Serial.print().

 Serial.println(val);

 Serial.println(val, format);

Serial.printle(13, BIN); gives "1101", binary value of 15 on erial Monitor.

NOTE: The only difference between Serial.print and Serial.println is that Serial.println means

that the next thing sent out the serial port after this one will start on the next line. There is a third

new thing you may have noticed. There is something in quotes (“). This is called a string.

https://www.arduino.cc/reference/en/language/functions/communication/serial/print

53

Circuit 9:

Circuit title: "Hello UsingARDinVET" Application in Serial Monitor”

Circuit Explanation: Hello UsingARDinVET will be seen on the serial Monitor.

/* "Hello UsingARDinVET" Application in Serial Monitor */

void setup()

{

 Serial.begin(9600); // Serial communication speed

}

void loop()

{

 Serial.println(" HELLO ");

 delay(2000);

 Serial.println(" UsingARDinVET!!!");

 delay(2000);

}

54

Circuit 10:

Circuit title: " Button Status Analysis on Serial Monitor”

Circuit Explanation: If the buton is pressed, "Led is ligthing, LED=ON" message is on the

serial monitor and the Led is lighting. If

If the buton is not pressed, ("Button is not pressed") message is on the serial monitor and the the

Led is lighting.

 /* Button Status Analysis on Serial Monitor */

void setup() {

 pinMode(4, OUTPUT);

 pinMode(7, INPUT);

 Serial.begin(9600); }

void loop() {

 if (digitalRead(7) == HIGH) // Read the digital signal on Pin-7

 {

 digitalWrite(4, HIGH);

 Serial.println("Led is ligthing, LED=ON");

 delay(250);

 }

 else // If the previous condition is not met.

 {

 digitalWrite(4, LOW);

 Serial.println("Button is not pressed");

55

 delay(1000);

 }

} //The view of the serial monitor is seen below.

56

Circuit 11:

Circuit title: " Sending data from the serial monitor.”

Circuit Explanation: If the “A” character on the keyboard is pressed, led1 is ON.

If the “3” character on the keyboard is pressed, led2 is ON.

If the “-” character on the keyboard is pressed, led1 nd led2 is OFF.

/* Sending data from the serial monitor */

char character;

#define led1 5

#define led2 6

 void setup() {

pinMode(led1, OUTPUT);

pinMode(led2, OUTPUT);

Serial.begin(9600);

Serial.println ("--- enter a character --- ");

Serial.println ("------------------------------");

}

void loop()

{ “

if (Serial.available()>0)

{

character=Serial.read();

Serial.println ("character, entered ");

Serial.println (character);

 if (character=='A') digitalWrite (led1, 1);

57

if (character=='a') digitalWrite (led1, 1);

if (character=='3') digitalWrite (led2, 1);

if (character=='-')

{

digitalWrite(led1,0);

digitalWrite(led2,0);

Serial.println ("led1 and led2 are OFF ");

}

}

}

58

Circuit 12:

Circuit title: "Learning the FOR Command”

Circuit Explanation:

/* "Learning the FOR Command” */

int led1 = 7;

int led2 = 8;

void setup() {

Serial.begin(9600);

pinMode(7,OUTPUT);

pinMode(8,OUTPUT);

}

void loop()

{

for(int i=1; i<6; i++)

{

Serial.println(i);

digitalWrite(led1, 1);

digitalWrite(led2, 1);

delay(1000);

 digitalWrite(led1, 0);

digitalWrite(led2, 0);

delay(1000);

}

}

59

Circuit 13: Circuit title: " FOR Command versus Serial Monitor”

Circuit Explanation: In this application, the LEDs will blink 6 times. Numbers 1, 2, 3, 4, 5,6

will appear on the serial monitor. Then it will be entered in the while loop by exiting the for

loop. And the program will stop here. To restart, the reset button must be pressed.

Here, we are using the same circuit as the previous one.

/* “FOR Command versus Serial Monitor” */

int led1 = 7;

int led2 = 8;

void setup() {

Serial.begin(9600);

pinMode(7,OUTPUT);

pinMode(8,OUTPUT); }

void loop() {

 for(int i=1; i<=6; i++) // the value of i = 1, 2,3, 4,5, 6

 {

 Serial.println(i); // Write the values of i, on the serial monitor

digitalWrite(led1, 1);

digitalWrite(led2, 1);

delay(1000);

digitalWrite(led1, 0);

digitalWrite(led2, 0);

delay(1000);

}
while(1); // the for loop doesn't get into an infinite loop.

}

60

NOTE: To restart, the reset button must be pressed.

Circuit 14:

Circuit title: " Knight Rider with 5 Leds by using the FOR Command ”

Circuit Explanation:

/* Knight Rider with 5 Leds by using the FOR Command */

void setup() {

pinMode(8, OUTPUT);

pinMode(9, OUTPUT);

pinMode(10, OUTPUT);

61

pinMode(11, OUTPUT);

pinMode(12, OUTPUT); }

void loop() {

 for (int b=8; b<=12; b++) // Upcounter starts here

 {

 digitalWrite(b, HIGH);

delay(150);

digitalWrite (b, LOW);

delay(150);

 }

 for (int b=12; b>=8; b--) // Downcounter starts here

 {

 digitalWrite (b, HIGH);

delay(150);

digitalWrite (b, LOW);

delay(150);

 }

}

62

Circuit 15:

Circuit title: " Producing random colors with RGB led, Using the switch/case command”

Circuit Explanation: Here, Random command and Switch/Case command are used in the

application. In this circuit, red, green, blue colors will be obtained randomly.

NOTE:

random() : The random function generates random numbers.

Syntax: random(max), random(min, max)

min: lower bound of the random value, (optional).

max: upper bound of the random value.

/* Producing random colors with RGB led, Using the switch/case command */

#define R 9

#define G 10

#define B 11

int colour;

int dly=3000;

void setup() {

pinMode(R, OUTPUT);

pinMode(G, OUTPUT);

pinMode(B, OUTPUT);

63

Serial.begin(9600);

}

void loop()

{

colour=random(4);

Serial.println(colour);

switch(colour) {

 case 0:

digitalWrite (R, 1); //RedLED=ON

digitalWrite (G, 0);

digitalWrite (B, 0);

delay(dly);

break;

 case 1:

digitalWrite (R, 0); //GreenLED=ON

digitalWrite (G, 1);

digitalWrite (B, 0);

delay(dly);

break;

 case 2: //BlueLED=ON

digitalWrite (R, 0);

digitalWrite (G, 0);

digitalWrite (B, 1);

delay(dly);

break;

 case 3: //No colour

digitalWrite (R, 0);

digitalWrite (G, 0);

digitalWrite (B, 0);

delay(dly);

break;

}

}

64

Circuit 16:

Circuit title: " 0-9 UpCounter with 7segment Common-Anode Display ”

Circuit Explanation: In order to see a number on the Display, the corresponding LED is lit

from the 7 LEDs, represented by the letters a, b, c, d, e, f, g.

 NOTE: A seven-segment display is a form of electronic display device for displaying decimal

numerals.

/* " 0-9 UpCounter with 7segment Common-Cathoode Display ” */

65

int a=6, b=7, c=9, d=10, e=11, f=5, g=4;

int number;

void setup() {

pinMode(a, OUTPUT);

pinMode(b, OUTPUT);

pinMode(c, OUTPUT);

pinMode(d, OUTPUT);

pinMode(e, OUTPUT);

pinMode(f, OUTPUT);

pinMode(g, OUTPUT);

}

void loop() {

for(number=0; number< =9; number++) {

delay(1000);

switch(number) {

 case 0:

digitalWrite (a, HIGH);

digitalWrite (b, HIGH);

digitalWrite (c, HIGH);

digitalWrite (d, HIGH);

digitalWrite (e, HIGH);

digitalWrite (f, HIGH);

digitalWrite (g, LOW);

break;

case 1:

digitalWrite (a, LOW);

digitalWrite (b, HIGH);

digitalWrite (c, HIGH);

digitalWrite (d, LOW);

digitalWrite (e, LOW);

digitalWrite (f, LOW);

digitalWrite (g, LOW);

break;

case 2:

digitalWrite (a, HIGH);

digitalWrite (b, HIGH);

digitalWrite (c, LOW);

digitalWrite (d, HIGH);

digitalWrite (e, HIGH);

digitalWrite (f, LOW);

digitalWrite (g, HIGH);

break;

case 3:

digitalWrite (a, HIGH);

digitalWrite (b, HIGH);

digitalWrite (c, HIGH);

digitalWrite (d, HIGH);

digitalWrite (e, LOW);

digitalWrite (f, LOW);

digitalWrite (g, HIGH);

break;

case 4:

digitalWrite (a,LOW);

digitalWrite (b, HIGH);

digitalWrite (c, HIGH);

digitalWrite (d, LOW);

digitalWrite (e, LOW);

digitalWrite (f, HIGH);

digitalWrite (g, HIGH);

break;

case 5:

digitalWrite (a, HIGH);

digitalWrite (b, LOW);

digitalWrite (c, HIGH);

digitalWrite (d, HIGH);

digitalWrite (e, LOW);

digitalWrite (f, HIGH);

digitalWrite (g, HIGH);

break;

66

case 6:

digitalWrite (a, HIGH);

digitalWrite (b, LOW);

digitalWrite (c, HIGH);

digitalWrite (d, HIGH);

digitalWrite (e, HIGH);

digitalWrite (f, HIGH);

digitalWrite (g, HIGH);

break;

case 7:

digitalWrite (a, HIGH);

digitalWrite (b, HIGH);

digitalWrite (c, HIGH);

digitalWrite (d, LOW);

digitalWrite (e, LOW);

digitalWrite (f, LOW);

digitalWrite (g, LOW);

break;

case 8:

digitalWrite (a, HIGH);

digitalWrite (b, HIGH);

digitalWrite (c, HIGH);

digitalWrite (d, HIGH);

digitalWrite (e, HIGH);

digitalWrite (f, HIGH);

digitalWrite (g, HIGH);

break;

case 9:

digitalWrite (a, HIGH);

digitalWrite (b, HIGH);

digitalWrite (c, HIGH);

digitalWrite (d, HIGH);

digitalWrite (e, LOW);

digitalWrite (f, HIGH);

digitalWrite (g, HIGH);

break;

}

}

}

Circuit 17:

Circuit title: " Using the PWN Technique”

Circuit Explanation: In practice, pin-6 as a PWM output and pin-7 as a digital output are

used. Thus, it is aimed to observe the difference between them. Applications such as led

brightness adjustment, motor speed control can be performed with the PWM method.

NOTE: The Arduino supports PWM (on certain pins marked with a tilde(~) on your Arduino

board - pins 3, 4,5,9,10 and 11) at 500Hz. (500 times a second.) You can give it a value between

0 and 255. 0 means that it is never 5V. 255 means it is always 5V. To do this you make a call to

analogWrite() with the value. The ratio of “ON” time to total time is called the “duty cycle”. A

PWM output that is ON half the time is said to have a duty cycle of 50%.

You can think of PWM as being on for x/255 where x is the value you send with analogWrite().

Below is an example showing what the pulses look like:

67

68

/* Learnning the PWN Technique by using analogWrite() */

#define led1 6

#define led2 7

void setup() {

pinMode(led1, OUTPUT);

pinMode(led2, OUTPUT); }

void loop() {

 analogWrite(led1, 60); // The value of 60 is sent to Led1 pin, i.e 1.05 V.

 analogWrite(led2,60); // The value of 60 is sent to Led2 pin, i.e 1.05 V.

delay (100); // only, the led1 lights.

}

Circuit 18:

Circuit title: " To change the brightness of an LED from minimum to maximum.”

Circuit Explanation: By using the PWM technique, the brightness of an LED from minimum

to maximum is changed. Here, analogWrite () and the for commands will be used together.

69

/* To change the brightness of an LED from minimum to maximum */

#define led1 6

int a;

void setup() {

Serial.begin(9600);

pinMode(led1, OUTPUT); }

void loop() {

 for (a=0; a<=255; a++) {

 Serial.println(a);

analogWrite(led1, a);

 delay (100);

 } }

NOT: Values ranging from 0 to 5 Volts are displayed on the voltmeter. Counting numbers

from 0 to 255 are displayed on the serial monitor.

 Circuit 19:

Circuit title: " Fotentiometer fades led.”

Circuit Explanation: By using the potentiometer (10K), the brightness of an LED from

minimum to maximum is changed. Here, the function of map() is used.

70

Note:

map() Function:

Re-maps a number from one range to another. That is, a value of fromLow would get mapped

to toLow, a value of fromHigh to toHigh, values in-between to values in-between, etc.

Does not constrain values to within the range, because out-of-range values are sometimes

intended and useful. The constrain() function may be used either before or after this function, if

limits to the ranges are desired.

 The map() function uses integer math so will not generate fractions, when the math might

indicate that it should do so. Fractional remainders are truncated, and are not rounded or

averaged.

Syntax: map(value, fromLow, fromHigh, toLow, toHigh);

Example: val = map(val, 0, 1023, 0, 255);

/* Fotentiometer fades led */

int LED_PIN = 3;

void setup() {

Serial.begin(9600);

pinMode(LED_PIN, OUTPUT); }

void loop() {

 // reads the input on analog pin A0 (value between 0 and 1023)

 int analogValue = analogRead(A0);

 // scales it to brightness (value between 0 and 255)

 int brightness = map(analogValue, 0, 1023, 0, 255);

 // sets the brightness LED that connects to pin 3

 analogWrite(LED_PIN, brightness);

 // print out the value

 Serial.print("Analog: ");

 Serial.print(analogValue);

71

 Serial.print(" Brightness: ");

 Serial.println(brightness);

 delay(100);

// Serial Monitor screen i below

}

Circuit 20:

Circuit title: " To use a buzzer”

Circuit Explanation: A buzzer is an audio signal device, which may be mechanical,

electromechanical, or piezoelectric (piezo for short). Typical uses of buzzers in the industry is as

an alarm devices, which makes a buzzing or beeping noise while need buzzing.

/* To use a buzzer in Arduino circuits*/

#define buzzer_pin 0

 void setup() {

72

 pinMode(buzzer_pin, OUTPUT); }

void loop() {

 digitalWrite(buzzer_pin, HIGH);

 delay(500);

 digitalWrite(buzzer_pin, LOW);

 delay(500); }

Circuit 21:

Circuit title: " To control a buzzer with Potentiometer ”

Circuit Explanation: “ When the the value of potentiometer is higher than 500, the buzzer

sounds.”

/* To control a buzzer with Potentiometer */

const int POT_PIN = A3; // Arduino pin connected to Pot pin

const int BUZZER_PIN = 0; // Arduino pin connected to Buzzer's pin

const int ANALOG_THRESHOLD = 500;

int analogValue;

73

void setup() {

 pinMode(BUZZER_PIN, OUTPUT); // set arduino pin to output mode

}

void loop() {

 analogValue = analogRead(POT_PIN); // read the input on analog pin

if(analogValue > ANALOG_THRESHOLD)

digitalWrite(BUZZER_PIN, HIGH); // turn on Buzzer

else

digitalWrite(BUZZER_PIN, LOW); // turn off Buzzer

}

74

Erasmus+ KA210-VET

Small-scale partnerships in vocational

education and training

Project Title: “Using Arduinos in Vocational Training”

Project Acronym: “UsingARDinVET”

Project No: “2023-1-RO01-KA210-VET-000156616”

LCD Module and Training KIT

75

 LCD Module and Training KIT

 In this module we want to explain how to display status messages or sensor readings of Arduino

on LCD displays . They are extremely common and a fast way to add a readable interface to your

project.

An LCD is short for Liquid Crystal Display. It is a display unit which uses liquid crystals to

produce a visible image. When current is applied to this special kind of crystal, it turns opaque

blocking the backlight that lives behind the screen. As a result that particular area will become

dark compared to other. And that’s how characters are displayed on the screen.

Interfacing 16×2 Character LCD Module with Arduino

There are different kind of LCD displays that you can connect to your Arduino. The most common

one is based on parallel interface LCD controller chip from Hitachi called the HD44780.

These LCDs are ideal for displaying text/characters only, hence the name ‘Character LCD’. The

display has an LED backlight and can display 32 ASCII characters in two rows with 16 characters

on each row.

There is a little rectangles for each character on the display, each of these rectangles is a grid of

5×8 pixels.

Although they display only text, they do come in many sizes and colors: for example, 16×1, 16×4,

20×4, with white text on blue background, with black text on green and many more.

The Arduino community has already developed a library to handle HD44780 LCDs

(LiquidCrystal Library); so we’ll have them interfaced in a few time.

76

Below is the LCD pinout:

- VSS: is a ground pin and should be connected to the ground of Arduino;

-

- VDD: connected to 5 V;

- VD: for contrast adjustment (connected to the central pin of the potentiometer) ;

- RS: controls in which lcd memory zone the sent data are stored;

- R/W: pin to select read/write mode;

- E: if enabled, allows the LCD module to perform special instructions;

- D0 to D7: data transmission;

- A and K: anode and cathode to provide backlight to the LCD module.

Arduino - LCD Functions (Commands)

LiquidCrystal lcd() - Creates a variable of type LiquidCrystal. The display can be controlled using

4 or 8 data lines. If the former, omit the pin numbers for d0 to d3 and leave those lines unconnected.

The RW pin can be tied to ground instead of connected to a pin on the Arduino; if so, omit it from

this function’s parameters. Syntax:

LiquidCrystal(rs, enable, d4, d5, d6, d7)

LiquidCrystal(rs, rw, enable, d4, d5, d6, d7)

LiquidCrystal(rs, enable, d0, d1, d2, d3, d4, d5, d6, d7)

LiquidCrystal(rs, rw, enable, d0, d1, d2, d3, d4, d5, d6, d7)

Parameters:

rs: the number of the Arduino pin that is connected to the RS pin on the LCD

rw: the number of the Arduino pin that is connected to the RW pin on the LCD (optional)

enable: the number of the Arduino pin that is connected to the enable pin on the LCD

d0, d1, d2, d3, d4, d5, d6, d7: the numbers of the Arduino pins that are connected to the

corresponding data pins on the LCD. d0, d1, d2, and d3 are optional; if omitted, the LCD will be

controlled using only the four data lines (d4, d5, d6, d7).

lcd.begin() - Initializes the interface to the LCD screen, and specifies the dimensions (width and

height) of the display. begin() needs to be called before any other LCD library commands. Syntax:

lcd.begin(cols, rows)

77

Parameters:

lcd: a variable of type LiquidCrystal

cols: the number of columns that the display has

rows: the number of rows that the display has

lcd.print() - Prints text to the LCD. Syntax:

lcd.print(data)

lcd.print(data, BASE)

Parameters:

lcd: a variable of type LiquidCrystal

data: the data to print (char, byte, int, long, or string)

BASE (optional): the base in which to print numbers: BIN for binary (base 2), DEC for decimal

(base 10), OCT for octal (base 8), HEX for hexadecimal (base 16).

Returns

byte print() will return the number of bytes written, though reading that number is optional

lcd.setCursor() - Position the LCD cursor; that is, set the location at which subsequent text written

to the LCD will be displayed. Syntax:

lcd.setCursor(col, row)

Parameters:

lcd: a variable of type LiquidCrystal

col: the column at which to position the cursor (with 0 being the first column)

row: the row at which to position the cursor (with 0 being the first row)

lcd.clear(); - Clears the LCD screen and positions the cursor in the upper-left corner.

Syntax: lcd.clear()

Parameters: lcd: a variable of type LiquidCrystal

78

Circuit 1:

Circuit title: "Print a message to the LCD”
Circuit Explanation: It is possible to connect an LCD display to the microcontroller and print the

desired messages on the screen.

Note: We have to include the library LiquidCrystal.h to use the LCD functions descripted below.

/* Print a message */

#include <LiquidCrystal.h> // include the library code

//constants for the number of rows and columns in the LCD

const int numRows = 2;

const int numCols = 16;

// initialize the library with the numbers of the interface pins

LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

void setup()

{

lcd.begin(numCols, numRows);

lcd.print("hello, world!"); // Print a message to the LCD.

}

void loop() {

}

79

Circuit 2:

Circuit title: "Digital Thermometer”
Circuit Explanation: To create a digital thermometer with Arduino. The temperature will be taken

with the LM35 temperature sensor and must be displayed on an LCD display and updated every

second.

The Vo pin of the LCD display adjusts the contrast of the characters displayed in the display. As

mentioned above, it must be connected to a 3.3 kΩ resistance connected to GND. However, in

some displays you may need to connect the Vo pin directly to GND

Note: the LM35 sensor has 3 terminals: one for the power supply, one for mass and one for the

output of the voltage proportional to the detected temperature, which is equal to 10 mV for each

degree centigrade, and is calibrated in degrees Celsius.

/* Digital Thermometer */

80

#include <LiquidCrystal.h> //Library to drive LCD display

#define pin_temp A0 //Temperature sensor Vout foot connection pin

float temp = 0; //Variable in which the detected temperature will be stored

LiquidCrystal lcd(7, 6, 5, 4, 3, 2); //Initializing the library with LCD display pins

void setup()

{

lcd.begin(16, 2); //Setting the number of columns and rows in the display

LCD lcd.setCursor(0, 0); //Move the cursor over the first row (row 0) and the first

column lcd.print ("Temperature:"); Print the message 'Temperature:' on the first line

//*Imposed ADC Vref at 1.1V

(for greater accuracy in temperature calculation)

IMPORTANT: If you use Arduino Mega replace INTERNAL with INTERNAL1V1 */

analogReference(INTERNAL);

}

void loop()

{

/*calculate the temperature ===*/

temp = 0;

for (int i = 0; i < 5; i++) { //It executes the next statement 5 times

temp += (analogRead(pin_temp) / 9.31); // It calculates temperature and sum at variable

'temp'

}

temp /= 5; //It calculates the mathematical average of temperature values

/*===*/

/*I see the temperature on the LCD display

===*/

lcd.setCursor(0, 1); //lcd.print(temp); Move the cursor over the first column

and the second row lcd.print(temp);

// Mold on LCD display temperature

lcd.print(" C"); // Mold a space and the 'C' font on the display

/*===*/

 delay(1000); //Delay by one second (it can be changed)

}

81

Interfacing I2C LCD with Arduino

If you want to connect an LCD display with Arduino, you have to consume a lot of pins on the

Arduino. Even in 4-bit mode, the Arduino still requires a total of seven connections, which is half

of the available digital I/O pins.

The solution is to use an LCD display that interfaces with I2C protocol. It only consumes two I/O

pins which can be not even part of a digital I/O pin set and can be shared with other I2C devices

as well.

The most diffuse I2C LCD display consists of a HD44780 based character LCD display and an

I2C LCD adapter.

The most important part of the adapter is the 8-Bit I/O Expander chip – PCF8574. This chip

converts the I2C data from an Arduino into the parallel data required by the LCD display. The

board also comes with a small potentiometer to make fine adjustments to the contrast of the

display. If you are using more than a device on the same I2C bus, you may need to set a different

I2C address for the board, so that it does not conflict with another I2C device. For this reason, the

board has three solder jumpers (A0, A1 and A2).

An I2C LCD has only 4 pins that interface it to the Arduino.

The pinout is as follows:

- GND: is a ground pin and should be connected to the ground of Arduino;

82

- VCC: supplies power to the module and the LCD. Connect it to the 5V output of the Arduino

or a separate power supply;

- SDA: is a Serial Data pin. This line is used for both transmit and receive. Connect to the SDA

pin on the Arduino;

- SCL: is a Serial Clock pin. This is a timing signal supplied by the Bus Master device. Connect

to the SCL pin on the Arduino.

On the Arduino boards with the R3 layout, the SDA (data line) and SCL (clock line) are on the pin

headers close to the AREF pin. They are also known as A5 (SCL) and A4 (SDA). Refer the below

table to identify the correct pins depending on the Arduino model.

 SCL SDA

Arduino Uno A5 A4

Arduino Nano A5 A4

Arduino Mega 21 20

Leonardo/Micr

o

3 2

83

Circuit 3:

Circuit title: "Print a message to the I2C LCD”
Circuit Explanation: It is possible to connect an LCD display to the microcontroller with only 4

pins and print the desired messages on the screen.

Note: We have to install a library called LiquidCrystal_I2C. This library is an improved version

of the LiquidCrystal library that comes packaged with your Arduino IDE.

/* Print a message on a I2C Display */

#include <LiquidCrystal_I2C.h>

LiquidCrystal_I2C lcd(0x3F,16,2); // set the LCD address to 0x3F for a 16 chars and 2 line

display

void setup() {

 lcd.init();

 lcd.clear();

 lcd.backlight(); // Make sure backlight is on

 // Print a message on both lines of the LCD.

 lcd.setCursor(2,0); //Set cursor to character 2 on line 0

 lcd.print("Hello world!");

 lcd.setCursor(2,1); //Move cursor to character 2 on line 1

84

 lcd.print("with I2C protocol!");

}

void loop() {

}

Interfacing OLED Graphic Display Module with Arduino

Another possibility to use the I2C protocol is choosing an OLED (Organic Light-Emitting Diode)

display. They’re super-light and thin, and produce a brighter and crisper picture.

An OLED display works without a backlight. This is why the display has such high contrast,

extremely wide viewing angle and can display deep black levels. Absence of backlight

significantly reduces the power required to run the OLED.

As we can see from the figure the pinout is the classic four-pin I2C interface already seen above.

The Arduino community has already developed a few libraries to handle these OLED displays,

such as Adafruit’s SSD1306 library. To install the library navigate to the Sketch > Include Library

> Manage Libraries… Wait for Library Manager to download libraries index and update list of

installed libraries.

Arduino - OLED Graphic Display Module Functions (Commands)

pinMode();

display.begin()

display.clearDisplay();

85

Circuit 4:

Circuit title: "Distance sensor”
Circuit Explanation: The distance will be taken with the HC-SR04 ultrasonic sensor and be

displayed on a OLED display.

Note: There are only four pins that you need to worry about on the HC-SR04: VCC (Power), Trig

(Trigger), Echo (Receive), and GND (Ground).

/* Distance sensor */

#include <SPI.h> // this library allows you to communicate with SPI devices, with the

Arduino as the master device.

#include <Wire.h> // this library allows you to communicate with I2C / TWI devices

#include <Adafruit_GFX.h> // the OLED display’s libraries

#include <Adafruit_SSD1306.h>

#define CommonSenseMetricSystem

#define trigPin 13 // define the pins of the sensor

#define echoPin 12

86

void setup() {

 Serial.begin (9600);

 pinMode(trigPin, OUTPUT);

 pinMode(echoPin, INPUT);

 display.begin(SSD1306_SWITCHCAPVCC, 0x3C); //initialize with the I2C addr 0x3C

(128x64)

 display.clearDisplay();

}

void loop() {

 long duration, distance;

 digitalWrite(trigPin, LOW);

 delayMicroseconds(2);

 digitalWrite(trigPin, HIGH);

 delayMicroseconds(10);

 digitalWrite(trigPin, LOW);

 duration = pulseIn(echoPin, HIGH);

 distance = (duration/2) / 29.1;

 display.setCursor(22,20); //oled display setting cursor

 display.setTextSize(3); //size of the text

 display.setTextColor(WHITE); //if you write black it erases things

 display.println(distance); //print our variable

 display.setCursor(85,20);

 display.setTextSize(3);

 display.println("cm");

 display.display();

 delay(500);

 display.clearDisplay();

 Serial.println(distance);//debug

}

87

Interfacing Nokia 5110 Graphic LCD Display with Arduino

You can interface Arduino with little LCDs similar to that Nokia used in their 3310 and 5110 cell

phones. these displays are small (only about 1.5″), inexpensive, easy to use, fairly low power (as

low as 6 to 7mA only) and can display text as well as bitmaps.

These are graphic display of 84×48 pixels. They interfaces to microcontrollers through a serial bus

interface similar to SPI. The LCD also comes with a backlight in different colors such as red,

green, blue and white. The backlight is nothing but four LEDs spaced around the edges of the

display.

It has 8 pins that interface it to the Arduino, the pinout is as follows:

- RST: resets the display. It’s an active low pin meaning; you can reset the display by pulling

it low. You can also connect this pin to the Arduino reset so that it will reset the screen

automatically;

- CE(Chip Enable): is used to select one of many connected devices sharing same SPI bus;

- D/C(Data/Command): pin tells the display whether the data it’s receiving is a command or

displayable data;

- DIN: is a serial data pin for SPI interface;

- CLK: is a serial clock pin for SPI interface;

- VCC: supplies power for the LCD which we connect to the 3.3V volts pin on the Arduino;

- BL(Backlight): controls the backlight of the display. To control its brightness, you can add a

potentiometer or connect this pin to any PWM-capable Arduino pin;

- GND: is a ground pin and should be connected to the ground of Arduino.

You can connect data transmission pins to any digital I/O pin. The LCD has 3v communication

levels, so we cannot directly connect these pins to the Arduino. One way is to add resistors inline

with each data transmission pin. Just add 10kΩ resistors between the CLK, DIN, D/C, and RST

88

pins and a 1kΩ resistor between CE. The backlight(BL) pin is connected to 3.3V via 330Ω current

limiting resistor. You can add a potentiometer or connect this pin to any PWM-capable Arduino

pin, if you wish to control its brightness.

The Arduino community has already developed a few libraries to handle these NOKIA displays,

such as Adafruit’s PCD8544 Nokia 5110 LCD library. To install the library navigate to the Sketch

> Include Library > Manage Libraries… Wait for Library Manager to download libraries index

and update list of installed libraries.

Circuit 5:

Circuit title: "Text Rotation”
Circuit Explanation: You can rotate the contents of the display by calling setRotation() function.

It allows you to view your display in portrait mode, or flip it upside down.

Note: The function accepts only one parameter that corresponds to 4 cardinal rotations. This value

can be any non-negative integer starting from 0. Each time you increase the value, the contents of

the display are rotated 90 degrees counter clockwise. For example:

● 0 – Keeps the screen to the standard landscape orientation.

● 1 – Rotates the screen 90° to the right.

● 2 – Flips the screen upside down.

● 3 – Rotates the screen 90° to the left.

89

/* Text Rotation */

#include <SPI.h> // this library allows you to communicate with SPI devices, with the

Arduino as the master device.

#include <Adafruit_GFX.h> // the OLED display’s libraries

#include <Adafruit_PCD8544.h>

// Declare LCD object for software SPIAdafruit_PCD8544(CLK,DIN,D/C,CE,RST);

Adafruit_PCD8544 display = Adafruit_PCD8544(7, 6, 5, 4, 3);

void setup() {

 Serial.begin(9600);

 //Initialize Display

 display.begin();

 display.setContrast(57); // you can change the contrast around to adapt the display

 display.clearDisplay(); // clear the buffer.

// Text Rotation

while(1)

{

 display.clearDisplay();

 display.setRotation(rotatetext);

 display.setTextSize(1);

 display.setTextColor(BLACK);

 display.setCursor(0,0);

 display.println("Text Rotation");

 display.display();

 delay(1000);

 display.clearDisplay();

 rotatetext++;

}

}

void loop() {}

90

Circuit 6:

Circuit title: "Button counter"
Circuit Explanation: an OLED display showing a number, which can be incremented and

decremented at the click of two different buttons.

#include <U8glib.h> //lcd libraries

#include "U8glib.h"

U8GLIB_SSD1306_128X64 u8g(U8G_I2C_OPT_NONE|U8G_I2C_OPT_DEV_0); //display

model

int button_plus = 8, button_minus = 7; //declaration pin buttons

int state_plus, state_minus, number=0;

void setup() {

 pinMode(button_plus,INPUT);

 pinMode(button_minus,INPUT);

 Serial.begin(9600);

 u8g.setFont(u8g_font_fub25n); //font to be used for the write of the number

}

91

void write_number(void) {

 u8g.setPrintPos(10,50);

 u8g.print(number);

}

void loop() {

 //buttons

 state_plus = digitalRead(button_plus);

 state_minus = digitalRead(button_minus);

if(state_plus==1)

{

 number++;

 delay(50);

}

 if(state_minus==1)

 {

 number--;

 delay(50);

 }

 //write de number sul display

 u8g.firstPage();

 do {

 write_number();

 } while (u8g.nextPage());

 u8g.firstPage();

}

92

Circuit 7:

Circuit title: “Counter with potentiometer"

Circuit Explanation: an OLED display that shows a number, incrementing and decrementing as

a potentiometer is turned.

#include <U8glib.h> //lcd libraries

#include "U8glib.h"

U8GLIB_SSD1306_128X64 u8g(U8G_I2C_OPT_NONE|U8G_I2C_OPT_DEV_0); //display

model

int potentiometer = 0; //declaration and potentiometer

int state_pot, stop_pot, difference, number=0;

void setup() {

 Serial.begin(9600);

 u8g.setFont(u8g_font_fub25n);//font to be used for the write of the number

}

void write_number(void) {

 u8g.setPrintPos(10,50);

 u8g.print(number);

}

93

void loop() {

 state_pot = analogRead(potentiometer);

 //potentiometer

 stop_pot = state_pot;//save the value when it is stop to see if the potentiometer turns clockwise

or counterclockwise

 delay(100);

 state_pot = analogRead(potentiometer);

 difference = stop_pot-state_pot;

 if((difference>2)||(difference<2))//is used to avoid making trades if the potentiometer is stop

 {

 number=number-difference/5;//if difference is greater than 0 then it turns clockwise and adds

otherwise it subtracts

 delay(100);

 }

 //write the number on display

 u8g.firstPage();

 do {

 write_number();

 } while

 (u8g.nextPage());

 u8g.firstPage();

}

94

Circuit 8:

Circuit title: "Marilyn Bmp Image”

Circuit Explanation: How to draw bitmap images to the Nokia 5110 LCD Display. In this

example there is a portrait of Marilyn Monroe.

Note: The screen resolution of Nokia 5110 LCD display is 84×48 pixels, so images larger than

that will not display correctly. To show bitmap image on the Nokia 5110 LCD display we need to

call drawBitmap() function. It takes six parameters:. top left corner X coordinate, top left corner

Y coordinate, byte array of monochrome bitmap, width of bitmap in pixels, height of bitmap in

pixels and Color. In our example, the bitmap image is 84×48 in size. So, X & Y coordinates are

set to 0 while width & height is set to 84 and 48.

/* Marilyn Bmp Image */

#include <SPI.h>

#include <Adafruit_GFX.h>

#include <Adafruit_PCD8544.h>

Adafruit_PCD8544 display = Adafruit_PCD8544(7, 6, 5, 4, 3);

// 'Marilyn Monroe 84x48', 84x48px

const unsigned char MarilynMonroe [] PROGMEM = {

95

 0x00, 0x00, 0x00, 0x7f, 0x00, 0x02, 0xfe, 0xf8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xbe,

0x00,

 0x00, 0x1f, 0xe0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x3f, 0x80,

0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0xf0, 0x00, 0x00, 0x1f, 0xe1, 0x80, 0x00, 0x00, 0x00, 0x00,

0x00, 0xc0,

 0x00, 0x00, 0x0f, 0xf1, 0xc0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0e, 0xd8,

0xe0,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x1f, 0x80, 0x00, 0x07, 0xe0, 0x70, 0x00, 0x00, 0x00,

0x00, 0x03,

 0x3f, 0xe0, 0x00, 0x07, 0xf0, 0x78, 0x00, 0x00, 0x00, 0x00, 0x01, 0xe0, 0x70, 0x00, 0x0f,

0xee,

 0x7c, 0x00, 0x00, 0x00, 0x00, 0x03, 0xc0, 0x00, 0x00, 0x0f, 0xf7, 0x1c, 0x00, 0x00, 0x00,

0x00,

 0x07, 0x80, 0x00, 0x0f, 0xc7, 0xf3, 0x1e, 0x00, 0x00, 0x00, 0x00, 0x07, 0xc0, 0x00, 0x0f,

0xf3,

 0xdf, 0x7f, 0x80, 0x00, 0x00, 0x00, 0x07, 0xfe, 0x00, 0x08, 0x7d, 0xef, 0xff, 0xc0, 0x00,

0x00,

 0x00, 0x7f, 0xff, 0x80, 0x30, 0x0f, 0xfc, 0xe0, 0xc0, 0x00, 0x00, 0x01, 0x9e, 0x73, 0xc0,

0xe0,

 0x07, 0xf8, 0xc1, 0xc0, 0x00, 0x00, 0x03, 0xfc, 0x00, 0x01, 0xc0, 0x0f, 0xfd, 0xe1, 0x80,

0x00,

 0x00, 0x03, 0xf8, 0x00, 0x01, 0x9c, 0x0f, 0xff, 0xc1, 0xc0, 0x00, 0x00, 0x02, 0xc0, 0x00,

0x01,

 0x9f, 0xbf, 0xfe, 0x01, 0x40, 0x00, 0x00, 0x02, 0x60, 0x00, 0x03, 0x07, 0xef, 0xff, 0x01,

0x40,

 0x00, 0x00, 0x00, 0x60, 0x00, 0x07, 0x01, 0xf7, 0xff, 0x80, 0xc0, 0x00, 0x00, 0x00, 0x50,

0x01,

 0xdf, 0x00, 0x7f, 0xff, 0x1c, 0x80, 0x00, 0x00, 0x00, 0x40, 0x01, 0xff, 0x00, 0x1f, 0xff,

0x1e,

 0xe0, 0x00, 0x00, 0x02, 0x08, 0x00, 0x3f, 0x80, 0x07, 0xef, 0x03, 0xe0, 0x00, 0x00, 0x06,

0x08,

 0x00, 0x03, 0xc0, 0x07, 0xdf, 0x07, 0xc0, 0x00, 0x00, 0x06, 0x08, 0x0f, 0x81, 0x80, 0x1f,

0xdf,

 0x1f, 0x80, 0x00, 0x00, 0x03, 0x08, 0x1f, 0x98, 0x00, 0x3f, 0xfe, 0x19, 0x80, 0x00, 0x00,

0x18,

 0x08, 0x3f, 0xfe, 0x00, 0x7f, 0xfe, 0x3f, 0x00, 0x00, 0x00, 0x08, 0x08, 0x30, 0x3f, 0x00,

0xff,

 0xff, 0x3f, 0x00, 0x00, 0x00, 0x01, 0xe0, 0x76, 0x0f, 0x89, 0xff, 0xff, 0x9f, 0x00, 0x00,

0x00,

 0x03, 0xe0, 0x7f, 0xc3, 0x81, 0xff, 0xfe, 0x9f, 0x80, 0x00, 0x00, 0x03, 0xf0, 0x7f, 0xf3,

0xc3,

 0xff, 0xfe, 0x1f, 0x00, 0x00, 0x00, 0x03, 0xf0, 0x7f, 0xfd, 0xc3, 0xff, 0xfe, 0x5e, 0x00,

0x00,

 0x00, 0x03, 0xf0, 0x7f, 0xff, 0xc3, 0xff, 0xf3, 0x1e, 0x00, 0x00, 0x00, 0x03, 0xf0, 0x71,

0xff,

 0x87, 0xff, 0xe3, 0xff, 0x00, 0x00, 0x00, 0x07, 0xf0, 0x7c, 0x3f, 0x87, 0xff, 0xe3, 0xfe,

0x00,

96

 0x00, 0x00, 0x0f, 0xf0, 0x3c, 0xff, 0x05, 0xff, 0xf3, 0xfc, 0x00, 0x00, 0x00, 0x0f, 0xf0,

0x0f,

 0xfe, 0x09, 0xff, 0xf7, 0xfc, 0x00, 0x00, 0x00, 0x08, 0xf8, 0x01, 0xfc, 0x19, 0xff, 0xff,

0xf8,

 0x00, 0x00, 0x00, 0x0c, 0x78, 0x00, 0x00, 0x13, 0xff, 0xff, 0xf8, 0x00, 0x00, 0x00, 0x0e,

0x78,

 0x00, 0x00, 0x23, 0xff, 0xff, 0xf0, 0x00, 0x00, 0x00, 0x0e, 0xf8, 0x00, 0x00, 0x47, 0xff,

0xff,

 0xf0, 0x00, 0x00, 0x00, 0x0c, 0xfa, 0x00, 0x01, 0x8f, 0xff, 0xff, 0xe0, 0x00, 0x00, 0x00,

0x08,

 0x7b, 0x00, 0x03, 0x3f, 0xff, 0xff, 0xe0, 0x00, 0x00, 0x00, 0x0c, 0x3b, 0xf8, 0x0f, 0xff,

0xff,

 0xff, 0xe0, 0x00, 0x00, 0x00, 0x0f, 0xbb, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf0, 0x00, 0x00,

0x00,

 0x07, 0xfb, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf0, 0x00, 0x00, 0x00, 0x00, 0x71, 0xff, 0xff,

0xff,

 0xff, 0xff, 0xe0, 0x00, 0x00, 0x00, 0x00, 0x41, 0xff, 0xff, 0xff, 0xff, 0xff, 0xe0, 0x00,

0x00

};

void setup() {

 Serial.begin(9600);

 display.begin();

 display.setContrast(57);

 display.clearDisplay();

 // Display bitmap

 display.drawBitmap(0, 0, MarilynMonroe, 84, 48, BLACK);

 display.display();

 // Invert Display

 //display.invertDisplay(1);

}

void loop() {}

97

Erasmus+ KA210-VET

Small-scale partnerships in vocational

education and training

Project Title: “Using Arduinos in Vocational

Training” Project Acronym: “UsingARDinVET”

Project No: “2023-1-RO01-KA210-VET-000156616”

Keypad Module and Training Kit

98

What a keypad is?

A Keypad is a system of buttons arranged in a matrix that works as a switching device to provide

a connection between a line and a column.

We will use a membrane keyboard with 4X4

matrix, because it is thin and has adhesive

support, so that it can be glued on most flat

surfaces.

Beneath each key is a membrane switch. Each

switch in a row is connected to the other

switches in the row by a conductive trace

underneath the pad. Each switch in a column is

connected the same way – one side of the

switch is connected to all of the other

switches in that column by a conductive trace.

Each row and column is brought out to a

single pin, for a total of 8 pins on a 4X4 keypad.

Pressing a button closes the switch between a column and a row trace, allowing current to

flow between a column pin and a row pin.

99

The schematic for a 4X4 keypad shows how the rows and columns are connected:

The Arduino detects which button is pressed by detecting the row and column pin that’s connected

to the button.

This happens in four steps:

1. First, when no buttons are pressed, all of the

column pins are held HIGH, and all of the row

pins are held LOW

2. When a button is pressed, the column pin is

pulled LOW since the current from the HIGH

column flows to the LOW row pin:

100

3. The Arduino now knows which column the

button is in, so now it just needs to find the row

the button is in. It does this by switching each

one of the row pins HIGH, and at the same time

reading all of the column pins to detect which

column pin returns to HIGH

4. When the column pin goes HIGH again, the

Arduino has found the row pin that is connected

to the button:

From the diagram above, you can see that the combination of row 2 and column 2 could only mean

that the number 5 button was pressed.

CONNECT THE KEYPAD TO THE ARDUINO

The pin layout for most membrane keypads will look like this:

101

Circuit 1

Circuit title: Serial monitor display the pressed key

Circuit description: Program will show us how to print each key press to the serial monitor.

1-) Breadboard view 2-) Schematic view

/* “Serial monitor display the pressed key” */

#include <Keypad.h>

const byte ROWS = 4;

const byte COLS = 4;

char hexaKeys[ROWS][COLS] = {

 {'1', '2', '3', 'A'},

 {'4', '5', '6', 'B'},

 {'7', '8', '9', 'C'},

102

 {'*', '0', '#', 'D'}

};

byte rowPins[ROWS] = {9, 8, 7, 6};

byte colPins[COLS] = {5, 4, 3, 2};

Keypad customKeypad = Keypad(makeKeymap(hexaKeys), rowPins, colPins, ROWS, COLS);

void setup(){

 Serial.begin(9600);

}

void loop(){

 char customKey = customKeypad.getKey();

 if (customKey){

 Serial.println(customKey);

 }

}

103

Circuit 2

Circuit title: Arduino Keypad Beep

Circuit description: When a key on the keypad is pressed, the piezo buzzer beeps

1-) Breadboard view

2-) Schematic view

104

/* “Arduino Keypad Beep” */

#include <Keypad.h>

#include <ezBuzzer.h>

const int BUZZER_PIN = 11;

const int ROW_NUM = 4; // four rows

const int COLUMN_NUM = 4; // four columns

char keys[ROW_NUM][COLUMN_NUM] = {

 {'1', '2', '3', 'A'},

 {'4', '5', '6', 'B'},

 {'7', '8', '9', 'C'},

 {'*', '0', '#', 'D'}

};

byte pin_rows[ROW_NUM] = {9, 8, 7, 6}; // connect to the row pinouts of the keypad

byte pin_column[COLUMN_NUM] = {5, 4, 3, 2}; // connect to the column pinouts of the

keypad

Keypad keypad = Keypad(makeKeymap(keys), pin_rows, pin_column, ROW_NUM,

COLUMN_NUM);

ezBuzzer buzzer(BUZZER_PIN); // create ezBuzzer object that attach to a pin;

void setup() {

 Serial.begin(9600);

}

void loop() {

 buzzer.loop(); // MUST call the buzzer.loop() function in loop()

 char key = keypad.getKey();

 if (key) {

 Serial.print(key); // prints key to serial monitor

 buzzer.beep(100); // generates a 100ms beep

 }

}

105

Circuit 3

Circuit title: Arduino Unlocking code

Circuit description: Program that sets a keypad on the Arduino. An LED will light up when you

type the correct code

1-) Breadboard view

2-) Schematic view

https://www.amazon.com/gp/product/B008GRTSV6/ref=as_li_qf_sp_asin_il_tl?ie=UTF8&tag=circbasi-20&camp=1789&creative=9325&linkCode=as2&creativeASIN=B008GRTSV6&linkId=865b30cb77043655e0de9151aed4a693

106

/* Arduino Unlocking code */

#include <Keypad.h> //Libraries you can download them via Arduino IDE

#include <Wire.h>

#include <LCD.h>

#include <LiquidCrystal_I2C.h>

#define Solenoid 12 //Actually the Gate of the transistor that controls the solenoid

 //in my case I use a simple LED

#include <liquidcrystal_i2c.h></liquidcrystal_i2c.h></lcd.h></wire.h></keypad.h>

#define I2C_ADDR 0x27 // LCD i2c Adress and pins

#define BACKLIGHT_PIN 3

#define En_pin 2

#define Rw_pin 1

#define Rs_pin 0

#define D4_pin 4

#define D5_pin 5

#define D6_pin 6

#define D7_pin 7

LiquidCrystal_I2C lcd(I2C_ADDR,En_pin,Rw_pin,Rs_pin,D4_pin,D5_pin,D6_pin,D7_pin);

const byte numRows= 4; //number of rows on the keypad

const byte numCols= 4; //number of columns on the keypad

int code = 1234; //here is the code

int tot,i1,i2,i3,i4;

char c1,c2,c3,c4;

//keymap defines the key pressed according to the row and columns just as appears on the

keypad char keymap[numRows][numCols]=

{

{'1', '2', '3', 'A'},

{'4', '5', '6', 'B'},

{'7', '8', '9', 'C'},

{'*', '0', '#', 'D'}

};

107

//Code that shows the keypad connections to the arduino terminals

byte rowPins[numRows] = {9,8,7,6}; //Rows 0 to 3

byte colPins[numCols]= {5,4,3,2}; //Columns 0 to 3

//initializes an instance of the Keypad class

Keypad myKeypad= Keypad(makeKeymap(keymap), rowPins, colPins, numRows, numCols);

void setup()

 {

 lcd.begin (16,2);

 lcd.setBacklightPin(BACKLIGHT_PIN,POSITIVE);

 lcd.setBacklight(HIGH);

 lcd.home ();

 lcd.print("ROMANIA DoorLock");

 lcd.setCursor(9, 1);

 lcd.print("Standby");

 pinMode(Solenoid,OUTPUT);

 delay(2000);

 }

void loop()

{

 char keypressed = myKeypad.getKey(); //The getKey fucntion keeps the program runing, as

long you didn't press "*" the whole thing bellow wouldn't be triggered

 if (keypressed == '*') // and you can use the rest of you're code simply

 {

 lcd.clear();

 lcd.setCursor(0, 0);

 lcd.print("Enter Code"); //when the "*" key is pressed you can enter the

passcode

 keypressed = myKeypad.waitForKey(); // here all programs are stopped until you

enter the four digits then it gets compared to the code above

 if (keypressed != NO_KEY)

 {

 c1 = keypressed;

108

 lcd.setCursor(0, 1);

 lcd.print("*");

 }

 keypressed = myKeypad.waitForKey();

 if (keypressed != NO_KEY)

 {

 c2 = keypressed;

 lcd.setCursor(1, 1);

 lcd.print("*");

 }

 keypressed = myKeypad.waitForKey();

 if (keypressed != NO_KEY)

 {

 c3 = keypressed;

 lcd.setCursor(2, 1);

 lcd.print("*");

 }

 keypressed = myKeypad.waitForKey();

 if (keypressed != NO_KEY)

 {

 c4 = keypressed;

 lcd.setCursor(3, 1);

 lcd.print("*");

 }

 i1=(c1-48)*1000; //the keys pressed are stored into chars I convert them to int

then i did some multiplication to get the code as an int of xxxx

 i2=(c2-48)*100;

 i3=(c3-48)*10;

 i4=c4-48;

 tot=i1+i2+i3+i4;

 if (tot == code) //if the code is correct you trigger whatever you want here it just print

a message on the screen

109

 {

 lcd.clear();

 lcd.setCursor(0, 0);

 lcd.print("Welcome");

 digitalWrite(Solenoid,HIGH);

 delay(3000);

 digitalWrite(Solenoid,LOW);

 lcd.setCursor(7, 1);

 lcd.print("ROMANIA DoorLock");

 delay(3000);

 lcd.clear();

 lcd.print("ROMANIA DoorLock");

 lcd.setCursor(9, 1);

 lcd.print("Standby");

 }

 else //if the code is wrong you get another thing

 {

 lcd.clear();

 lcd.setCursor(0, 0);

 lcd.print("WRONG CODE");

 delay(3000);

 lcd.clear();

 lcd.print("ROMANIA DoorLock");

 lcd.setCursor(9, 1);

 lcd.print("Standby");

 }

 }

}

110

Circuit 4

Circuit title: Arduino calculator

Circuit description: Program does basic mathematical calculations

1-) Breadboard view

 2-) Schematic view

111

/* Arduino calculator */

#include <Keypad.h>

#include <EEPROM.h>

#include <LCD.h>

#include <LiquidCrystal_I2C.h>

#define I2C_ADDR 0x27 //I2C adress

#define BACKLIGHT_PIN 3 // Declaring LCD Pins

#define En_pin 2

#define Rw_pin 1

#define Rs_pin 0

#define D4_pin 4

#define D5_pin 5

#define D6_pin 6

#define D7_pin 7

const byte ROWS = 4; // Four rows

const byte COLS = 4; // Four columns

// Define the Keymap

char keys[ROWS][COLS] = {

 {'1','2','3','A'},

 {'4','5','6','B'},

 {'7','8','9','C'},

 {'*','0','#','D'}

};

byte rowPins[ROWS] = {9,8,7,6}; //Rows 0 to 3

byte colPins[COLS]= {5,4,3,2}; //Columns 0 to 3

LiquidCrystal_I2C lcd(I2C_ADDR,En_pin,Rw_pin,Rs_pin,D4_pin,D5_pin,D6_pin,D7_pin);

Keypad kpd = Keypad(makeKeymap(keys), rowPins, colPins, ROWS, COLS); // Create the

Keypad

long Num1,Num2,Number;

 char key,action;

 boolean result = false;

 void setup()

112

 {

 lcd.begin (16,2);

 lcd.setBacklightPin(BACKLIGHT_PIN,POSITIVE);

 lcd.setBacklight(HIGH); //Lighting backlight

 lcd.print("Calculator Ready"); //Display a intro message

 lcd.setCursor(0, 1); // set the cursor to column 0, line 1

 lcd.print("A=+ B=- C=* D=/"); //Display a intro message

 delay(6000); //Wait for display to show info

 lcd.clear(); //Then clean it

 // for(i=0 ; i<sizeof(code);i++){ //When you upload the code the first

time keep it commented

// EEPROM.get(i, code[i]); //Upload the code and change it to store it in the

EEPROM

// } //Then uncomment this for loop and reupload the code (It's done only once)

 }

void loop() {

 key = kpd.getKey(); //storing pressed key value in a char

if (key!=NO_KEY)

DetectButtons();

if (result==true)

CalculateResult();

DisplayResult();

}

void DetectButtons()

{

 lcd.clear(); //Then clean it

 if (key=='*') //If cancel Button is pressed

 {Serial.println ("Button Cancel"); Number=Num1=Num2=0; result=false;}

 if (key == '1') //If Button 1 is pressed

 {Serial.println ("Button 1");

 if (Number==0)

 Number=1;

113

 else

 Number = (Number*10) + 1; //Pressed twice

 }

 if (key == '4') //If Button 4 is pressed

 {Serial.println ("Button 4");

 if (Number==0)

 Number=4;

 else

 Number = (Number*10) + 4; //Pressed twice

 }

 if (key == '7') //If Button 7 is pressed

 {Serial.println ("Button 7");

 if (Number==0)

 Number=7;

 else

 Number = (Number*10) + 7; //Pressed twice

 }

 if (key == '0')

 {Serial.println ("Button 0"); //Button 0 is Pressed

 if (Number==0)

 Number=0;

 else

 Number = (Number*10) + 0; //Pressed twice

 }

 if (key == '2') //Button 2 is Pressed

 {Serial.println ("Button 2");

 if (Number==0)

 Number=2;

 else

 Number = (Number*10) + 2; //Pressed twice

 }

 if (key == '5')

114

 {Serial.println ("Button 5");

 if (Number==0)

 Number=5;

 else

 Number = (Number*10) + 5; //Pressed twice

 }

 if (key == '8')

 {Serial.println ("Button 8");

 if (Number==0)

 Number=8;

 else

 Number = (Number*10) + 8; //Pressed twice

 }

 if (key == '#')

 {Serial.println ("Button Equal");

 Num2=Number;

 result = true;

 }

 if (key == '3')

 {Serial.println ("Button 3");

 if (Number==0)

 Number=3;

 else

 Number = (Number*10) + 3; //Pressed twice

 }

 if (key == '6')

 {Serial.println ("Button 6");

 if (Number==0)

 Number=6;

 else

 Number = (Number*10) + 6; //Pressed twice

 }

115

 if (key == '9')

 {Serial.println ("Button 9");

 if (Number==0)

 Number=9;

 else

 Number = (Number*10) + 9; //Pressed twice

 }

 if (key == 'A' || key == 'B' || key == 'C' || key == 'D') //Detecting Buttons on Column 4

 {

 Num1 = Number;

 Number =0;

 if (key == 'A')

 {Serial.println ("Addition"); action = '+';}

 if (key == 'B')

 {Serial.println ("Subtraction"); action = '-'; }

 if (key == 'C')

 {Serial.println ("Multiplication"); action = '*';}

 if (key == 'D')

 {Serial.println ("Division"); action = '/';}

 delay(100);

 }

}

void CalculateResult()

{

 if (action=='+')

 Number = Num1+Num2;

 if (action=='-')

 Number = Num1-Num2;

 if (action=='*')

 Number = Num1*Num2;

 if (action=='/')

 Number = Num1/Num2;

116

}

void DisplayResult()

{

 lcd.setCursor(0, 0); // set the cursor to column 0, line 1

 lcd.print(Num1); lcd.print(action); lcd.print(Num2);

 if (result==true)

 {lcd.print(" ="); lcd.print(Number);} //Display the result

 lcd.setCursor(0, 1); // set the cursor to column 0, line 1

 lcd.print(Number); //Display the result

}

117

Erasmus+ KA210-VET

Small-scale partnerships in vocational

education and training

Project Title: “Using Arduinos in Vocational

Training” Project Acronym: “UsingARDinVET”

Project No: “2023-1-RO01-KA210-VET-000156616”

Dot Matrix Module

Using Arduinos in Vocational Training

UsingARDinVET

IPSIA G.Giorgi - Potenza (Italy)

Dot Matrix Display Module

In the context of Arduino, a Dot Matrix is an LED display consisting of a two-dimensional

grid of LEDs arranged in rows and columns. Each LED can be independently turned on or off

, allowing for the creation of complex patterns and animations through the simultaneous control

of multiple LEDs.

An LED matrix is useful for a wide range of applications. An 8x8 matrix, like the one shown

in Figure 1, can be used to display letters or numbers. If you have several of these modules

placed side by side, you can create a display with scrolling text.

Figure 1: An 8x8 dot matrix LED.

Note that the module is designed so that there is very little space between the LEDs and the

edges of the module. When these types of matrix modules are mounted side by side, the distance

between the last column or row on one module and the adjacent column or row on the next

module is equal to the distance between the LEDs located at the center of the module. This

maintains a consistent spacing when using multiple modules to create large displays.

Circuit 1. Creating a Bar Graph

Consider, for instance, an 10x1 Dot Matrix display, which consists of 10 individual LEDs

arranged in a single row. You can connect the LEDs as shown in Figure 2.

The following sketch turns on a series of LEDs, with the number being proportional to the value

of a potentiometer connected to an analog input port.

const int analog Pin = A0 ; // the pin at the potentiometer is attached to

const int led Count = 10 ; // the number of LEDs in the bar graph

// an array of pin numbers to which LEDs are attached

Figure 2: Bar Graph.

i n t l e d Pi n s [] = { 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 };

void setup () {

// l oop over the pin array and s e t them a l l to output :

f o r (i n t this Led = 0 ; this Led < led Count ; this Led++) {

pinMode (l e d Pi n s [this Led] , OUTPUT) ;

}

}

void loop () {

// read the potentiometer :

i n t sensor Reading = analogRead (analog Pin) ;

// map the r e s u l t to a range from 0 to the number o f LEDs :

 i n t l e d L e v e l = map(sensor Reading , 0 , 1023 , 0 , led Count) ;

// l oop over the LED array :

f o r (i n t this Led = 0 ; this Led < led Count ; this Led++) {

// i f the array element ' s index i s l e s s than l e d Level ,

// turn the pin for t h is element on :

 i f (this Led < l ed Level) {

d i g i t a l W r i t e (l e d Pi ns [this Led] , HIGH) ;

}

// turn o f f a l l pins h i g h e r than the l e d L e v e l :

e l s e {

d i g i t a l W r i t e (l e d Pi n s [this Led] , LOW) ;

}

}

}

The pins connected to LEDs are held in the array ledPins. To change the number of LEDs, you

can add (or remove) elements from this array, but make sure the variable ledCount is the same

as the number of elements (which should be the same as the number of pins). The Arduino map

function is used to calculate the number of LEDs that should be lit as a proportion of the sensor

value. The code loops through each LED, turning it on if the proportional value of the sensor is

greater than the LED number.

In an ideal world, a potentiometer at its lowest setting will return zero, but it's likely to drift in

the real world. When the sensor is at maximum value, all the LEDs are lit. If you nd that the

last LED ickers when the potentiometer is at its maximum value, try lowering the second

argument to map from 1023 to 1000 or so.

Circuit 2. Controlling an LED Matrix

This sketch uses an LED matrix of 64 LEDs, with anodes connected in rows and cathodes

in columns (as in the Jameco 2132349). Figure 3 shows the connections (Dual-color LED

displays ay be easier to obtain, and you can drive just one of the colors if that is all you need).

Figure 3: An LED matrix connected to 16 digital pins.

const i n t columnPins [] = { 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 };

const i n t rowPins [] = { 10 , 11 , 12 , A1 , A2 , A3 , A4 , A5 } ;

 i n t p i x e l = 0 ; // 0 to 63 LEDs in the matrix

i n t column Level = 0 ; // pixel value converted into LED column

i n t row Level = 0 ; // pixel value converted into LED row

void setup () {

for (i n t i = 0 ; i < 8 ; i ++) { pinMode (

columnPins [i] , OUTPUT) ; pinMode

(rowPins [i] , OUTPUT) ;

}

}

void loop () {

p i x e l = p i x e l + 1 ;

i f (p i x e l > 63) p i x e l = 0 ;

column Level = p i x e l / 8 ; // map to the number of columns row

Level = p i x e l % 8 ; // g e t the fractional value

f o r (i n t column = 0 ; column < 8 ; column++) { d i

g i t a l W r i t e (columnPins [column] , LOW) ;

f o r (i n t row = 0 ; row < 8 ; row++)

{ i f (column Level > column) {

d i g i t a l W r i t e (rowPins [row] , HIGH) ;

} e l s e i f (column Level == column && row Level >= row) {

d i g i t a l W r i t e (rowPins [row] , HIGH) ;

} e l s e {

// turn o f f a l l LEDs in t h i s row

d i g i t a l W r i t e (columnPins [column] ,

LOW) ;

}

delay Microseconds (3 0 0) ;

d i g i t a l W r i t e (rowPins [row] , LOW) ; // turn o f f LED

}

// disconnect this column from Ground

d i g i t a l W r i t e (columnPins [column] ,

HIGH) ;

}

}

The resistor's value must be chosen to ensure that the maximum current through a pin does not

exceed 40 mA on the Arduino Uno. Because the current for up to eight LEDs can flow through

each column pin, the maximum current for each LED must be one-eighth of 40 mA, or 5 mA.

Each LED in a typical small red matrix has a forward voltage of around 1.8 volts. Calculating

the resistor that results in 5 mA with a forward voltage of 1.8 volts gives a value of 680Ω. Check

your datasheet to find the forward voltage of the matrix you want to use. Each column of the

matrix is connected through the series resistor to a digital pin. When the column pin goes low

and a row pin goes high, the corresponding LED will light. For all LEDs where the column pin

is high or its row pin is low, no current will ow through the LED and it will not light. The for

loop scans through each row and column and turns on sequential LEDs until all LEDs are lit.

The loop starts with the first column and row and increments the row counter until all LEDs in

that row are lit; it then moves to the next column, and so on, lighting another LED with each

pass through the loop until all the LEDs are lit.

You don't have to light an entire row at once. The following sketch will light one LED at a time

as it goes through the sequence:

const i n t columnPins [] = { 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 };

const i n t rowPins [] = { 10 , 11 , 12 , A1 , A2 , A3 , A4 , A5 } ;

 i n t p i x e l = 0 ; // 0 to 63 LEDs in the matrix

void setup () {

f o r (i n t i = 0 ; i < 8 ; i ++) {

pinMode (columnPins [i] , OUTPUT) ; // make a l l the LED pins o utp uts

pinMode (rowPins [i] , OUTPUT) ;

d i g i t a l W r i t e (columnPins [i] , HIGH) ;

}

}

void loop () {

p i x e l = p i x e l + 1 ;

i f (p i x e l > 63) p i x e l = 0 ;

i n t column = p i x e l / 8 ; // map to the number of columns

i n t row = p i x e l % 8 ; // g e t the fractional value

d i g i t a l W r i t e (columnPins [column] , LOW) ; // Connect t h i s column to

GND

d i g i t a l W r i t e (rowPins [row] , HIGH) ; // Take this row HIGH

delay (1 2 5) ; // pause b r i e f l y

d i g i t a l W r i t e (rowPins [row] , LOW) ; // Take the row low

d i g i t a l W r i t e (columnPins [column] , HIGH) ; // Disconnect the column from GND

}

Circuit 3. Displaying Images on an LED Matrix

You want to display one or more images on an LED matrix, perhaps creating an animation

e ect by quickly alternating multiple images. This solution can use the same wiring as in gure

3. The sketch creates the e ect of a heart beating by brie y lighting LEDs arranged in the shape

of a heart. A small heart followed by a larger heart is ashed for each heartbeat (the images look

like gure 4):

byte big Heart [] = {

B01100110 ,

B11111111 ,

B11111111 ,

B11111111 ,

B01111110 ,

Figure 4: The two heart images displayed on each beats.

B00111100 ,

B00011000 ,

B00000000 } ;

byte small Heart [] = {

B00000000 ,

B00000000 ,

B00010100 ,

B00111110 ,

B00111110 ,

B00011100 ,

B00001000 ,

B00000000 } ;

const i n t columnPins [] = { 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 };

const i n t rowPins [] = { 10 , 11 , 12 , A1 , A2 , A3 , A4 , A5 } ;

void setup () {

f o r (i n t i = 0 ; i < 8 ; i ++) {

pinMode (rowPins [i] , OUTPUT) ; // make a l l the LED pins o utp uts

pinMode (columnPins [i] , OUTPUT) ;

d i g i t a l W r i t e (columnPins [i] , HIGH) ; // disconnect column pins from Ground

}

}

void loop () {

i n t pulse Delay = 800 ; // m i l l i s e c o n d s to wait between b e ats

show (small Heart, 8 0) ; // show the small heart image fo r 80 ms

show (big Heart, 16 0) ; // followed by the big heart f o r 160 ms

delay (pulse Delay) ; // show nothing between beats

}

// Show a frame o f an image s to re d in the array pointed to by the image

// parameter . The frame i s repeated f o r the given duration in millisecond s .

void show (byte * image),

unsigned long duration) {

unsigned long s t a r t = m i l l i s () ; // b egin timing the animation

while (s t a r t + duration > m i l l i s ()) // loop u n t i l the duration has passed

{

f o r (i n t row = 0 ; row < 8 ; row++) {

d i g i t a l W r i t e (rowPins [row] , HIGH) ;

// connect row to +5 volts

f o r (i n t column = 0 ; column < 8 ; column++)

{bool p i x e l = bitRead (image [row] , column) ;

 i f (p i x e l == 1) {

d i g i t a l W r i t e (columnPins [column] , LOW) ; // connect column to
Gnd

}

delay Microseconds (3 0 0) ; // a small delay f o r each LED d i g

i t a l W r i t e (columnPins [column] , HIGH) ; // disconnect column from Gnd

}

d i g i t a l W r i t e (rowPins [row] , LOW) ; // disconnect LEDs

}

}

}

The value written to the LED is based on images stored in the bigHeart and smallHeart arrays.

Each element in the array represents a pixel (a single LED) and each array row represents a row

in the matrix. A row consists of eight bits represented using binary format (as designated by the

capital B at the start of each row). A bit with a value of 1 indicates that the corresponding LED

should be on; a 0 means o . The animation e ect is created by rapidly switching between the

arrays. The loop function waits a short time (800 ms) between beats and then calls the show

function, rst with the smallHeart array and then followed by the bigHeart array. The show

function steps through each element in all the rows and columns, lighting the LED if the

corresponding bit is 1. The bitRead function is used to determine the value of each bit. A short

delay of 300 microseconds between each pixel allows the eye enough time to perceive the LED.

The timing is chosen to allow each image to repeat quickly enough (50 times per second) so

that blinking is not perceptible.

Here is a variation that changes the rate at which the heart beats, based on the value from a

sensor. You can test this using a variable resistor connected to analog input pin 0. Use the wiring

and code shown earlier, except replace the loop function with this code:

void loop () {

i n t sensor Value = analogRead (A0) ; // read the analog in value

 i n t pulse Rate =

map(sensor Value , 0 , 1023 , 40 , 2 4 0) ; // convert to beats / minute

i n t pulse Delay = (60000 / pulse Rate) ; // m i l l i s e c o n d s to wait between beats

show (small Heart , 8 0) ;// show the small heart image f o r 100 ms

show (big Heart , 16 0) ; // f o l l o w e d by the b i g heart for 200 ms

delay (pulse Delay) ; // show nothing between beats

}

This version calculates the delay between pulses using the map function to convert the sensor

value into beats per minute.

Circuit 4. Controlling an Array of LEDs by using MAX72xx

You have an 8x8 array of LEDs to control, and you want to minimize the number of required

Arduino pins. You can use a shift register to reduce the number of pins needed to control an

LED matrix. This solution uses the MAX7219 or MAX7221 LED driver chip to provide this

capability. Connect your Arduino, matrix, and MAX72xx as shown in gure 5).

Figure 5: MAX72xx driving an 8x8 LED array.

This sketch is based on the MD_MAX72XX library, which can display text, draw objects on

the display, and perform various transformations on the display. You can nd the library in the

Arduino Library Manager.

#i n c l u d e <MD_MAX72xx. h>

// Pins to control 7219

#d e f i n e LOAD_PIN 2

#d e f i n e CLK_PIN 3

#d e f i n e DATA_PIN 4

// Configure the hardware

#d e f i n e MAX_DEVICES 1

#d e f i n e HARDWARE_TYPE MD_MAX72XX:

:PAROLA_HW MD_MAX72XX mx =

MD_MAX72XX(HARDWARE_TYPE, DATA_PIN, CLK_PIN, LOAD_PIN,
MAX_DEVICES) ;

void setup () { mx. begin () ; }

void loop () {

mx. c l e a r () ; // Clear the d i s p l a y

// Draw rows and columns

f o r (i n t r = 0 ; r < 8 ; r++)

{ f o r (i n t c = 0 ; c < 8 ; c++) {

mx. setPoint (r , c , true) ;

// L ig ht each LED delay (5 0) ;

}

// Cycle through available brightness levels

f o r (i n t k = 0 ; k <= MAX_INTENSITY; k++) {

mx. c o n t r o l (MD_MAX72XX: :

INTENSITY, k) ; delay (1 0 0) ;

}

}

}

A matrix is created by passing the hardware type, pin numbers for the data, load, and clock

pins, and also the maximum number of devices (in case you are chaining modules). loop clears

the display, then uses the setPoint method to turn pixels on. After the sketch draws a row, it

cycles through the available brightness intensities and moves on to the next row.

The pin numbers shown here are for the green LEDs in the dual-color 8x8 matrix, available

from Adafruit (part number 458). This sketch will work with a single-color matrix as well, since

it only uses one of the two colors. If you nd that your matrix is displaying text back- ward or

not in the orientation you expect, you can try changing the hardware type in the line #define

HARDWARE_TYPE MD_MAX72XX::PAROLA_HW from PAROLA_HW to one of

GENERIC_HW, ICSTATION_HW, or FC16_HW.

The resistor (marked R1 in gure 5) is used to control the maximum current that will be used to

drive an LED. The MAX72xx datasheet has a table that shows a range of values. The green

LED in the LED matrix shown in gure 5 has a forward voltage of 2 volts and a forward current

of 20 mA. Table of resistor values (from MAX72xx datasheet) indicates 28kΩ, but to add a

little safety margin, a resistor of 30kΩ or 33kΩ would be a suitable choice. The capacitors (0.1

µF and 10 µF) are required to prevent noise spikes from being generated when the LEDs are

switched on and off.

RGB LEDs

A Light-Emitting Diode (LED) is a small component that illuminates when current ows

through it. RGB LEDs (Figure 6) operate on the same principle, but they internally contain

three LEDs (Red, Green, and Blue) capable of combining to produce nearly any color output.

Figure 6: RGB LEDs.

The RGB color model is a way to represent colors by mixing red, green, and blue light (Figure

7). Each color channel's intensity determines the overall color displayed. Combining these

primary colors at different levels generates millions of colors visible to the human eye. For

example, to create purely blue light, you have to adjust the blue LED to the highest intensity

while setting the green and red LEDs to the lowest. But, for white light, all three LEDs have to

be set to their highest intensity.

Figure 7: RGB color model.

RGB LEDs contain three LEDs inside, and usually, these three LEDs share a common anode

or cathode. This categorizes RGB LEDs as either a common anode or a common cathode type

(Figure 8).

Circuit 5. Using a RGB LED

To achieve different colors with an RGB LED you need to control the brightness of each

internal LED. This can be accomplished by using PWM signals with an Arduino.

In the circuit shown in the gure 9 the cathode is connected to GND, and the three anodes are

connected to three digital pins on the Arduino Board through 220 Ohms resistors. It is important

that the pins you use in your Arduino can output PWM signals.

The following code will make the RGB LED change a few colors:

Figure 8: Types of RGB LEDs.

Figure 9: Connect an RGB LED to an Arduino.

// Declare the PWM LED pins

 i n t redLED = 9 ;

i n t greenLED = 10 ;

i n t blueLED = 11 ;

void setup () {

// Declare the pins f o r the LED as Output pinMode (

redLED , OUTPUT) ;

pinMode (greenLED , OUTPUT) ;

pinMode (blueLED , OUTPUT) ;

}

// A simple f u nc t io n to s e t the level for each color from 0 to 255

void s tColor (

i n t redValue ,

i n t greenValue ,

i n t blueValue) {

analog Write (redLED , red Value) ;

analog Write (greenLED , green Value) ;

analog Write (blueLED , blue Value) ;

}

void loop () {

// Change a few colors

s e t Co l o r (255 , 0 , 0) ; // Red Color

delay (10 0 0) ;

s e t Co l o r (0 , 255 , 0) ; // Green Color

delay (10 0 0) ;

s e t Co l o r (0 , 0 , 2 5 5) ; // Blue Color

delay (10 0 0) ;

s e t Co l o r (255 , 255 , 0) ; // Yellow

delay (10 0 0) ;

s e t Co l o r (0 , 255 , 2 5 5) ; // Cyan

delay (10 0 0) ;

s e t Co l o r (255 , 0 , 2 5 5) ; // Magenta

delay (10 0 0) ;

s e t Co l o r (255 , 255 , 2 5 5) ; // White

delay (10 0 0) ;

}

In the setup function, pins 9, 10, and 11 are con gured as outputs. The loop function repeatedly

calls the setColor function to display di erent colors at one-second intervals. The setColor

function takes three parameters (red, green, and blue values) which can range from 0 to 255.

These values are used in the analogWrite function, which outputs PWM signals to control the

intensity of each RGB LED channel color.

Circuit 6. Control RGB LED with potentiometer

In this example (gure 10), we are going to modify the color of the RGB LED when we turn

the potentiometer knob.

Figure 10: Arduino circuit with RGB LED and potentiometer.

Let's write the code for that.

#d e f i n e RGB_RED_PIN 11

#d e f i n e RGB_BLUE_PIN 10

#d e f i n e RGB_GREEN_PIN 9

#d e f i n e POTENTIOMETER_PIN A0

void setup ()

{

pinMode (RGB_RED_PIN,

OUTPUT) ; pinMode

(RGB_BLUE_PIN, OUTPUT) ;

pinMode (RGB_GREEN_PIN,

OUTPUT) ;

}

void loop ()

{

int potentiometer Value = analogRead (POTENTIOMETER_PIN);

i n t rgb Value = map(potentiometer Value, 0 , 1023 , 0 , 15 3 5) ;

i n t red ;

i n t blue; i

n t green;

i f (rgb Value < 256) {

red = 255 ;

blue = rgb Value ;

green = 0 ;

}

e l s e i f (rgb Value < 512) {

red = 511 = rgb Value ; blue

= 255 ;

green = 0 ;

}

e l s e i f (rgb Value < 768) {

red = 0 ;

blue = 255 ;

green = rgb Value = 512 ;

}

e l s e i f (rgb Value < 1024) {

red = 0 ;

blue = 1023 = rgb Value ;

green = 255 ;

}

e l s e i f (rgb Value < 1280) {

red = rgb Value = 1024 ; blue

= 0 ;

green = 255 ;

}

e l s e {

red = 255 ;

blue = 0 ;

green = 1535 = rgb Value ;

}

analog Write (RGB_RED_PIN, red) ;

analog Write (RGB_BLUE_PIN, blue) ;

analog Write (RGB_GREEN_PIN, green

) ;

}

At rst, we create a de ne for each pin we are going to use. One for the potentiometer, and one

for each color of the LED (we write the code as if we were controlling 3 different LEDs).

In the void setup(), we initialize all LEDs (in fact, the 3 legs of the RGB LED) to OUTPUT

mode. Nothing to do for the potentiometer, as an analog pin is already in input mode by default.

In the void loop(), we rst read the potentiometer's value with analogRead(). This gives us a

value between 0 and 1023. Because we want to choose between 1536 different options, we use

the map() function to transform this value from the range 0-1023 to the range 0-1535.

So, we have 6 different steps for changing the color. Also, you can note that the rst color and

the last color are the same (red).

For the 1st step: we set red to 255, and we increase the blue color from 0-255, according to the

rgbValue we computed (in the range 0-1535).

If the rgbValue is more than 255, we go to step number 2. Now we have values from 256 to

511. We set blue to 255, and then decrease the red value. To do so, we need to subtract the

rgbValue to the max value for this block, which is 511. As an example, if we enter the if

structure with rgbValue = 400, then we have red = 511 - 400 = 111.

For step number 3, we keep blue to 255, and this time we increase green. The rgbValue is now

between 512 and 767. So, to start from 0 and get to 255, we subtract 512 to each value we get.

Steps number 4, 5, and 6 are following the same logic as the previous steps.

Now, we have 3 values between 0-255, stored into 3 different variables. After the computation,

we use analogWrite() on each leg of the RGB like if it were 3 different LEDs, with the

corresponding values for red, blue, and green.

NeoPixel LED

NeoPixels are intelligent RGB LED strips whose elements can be controlled individually.

They use WS2812, WS2811 or WS6812 drivers and use a single wire protocol to control the

colour of the embedded LED. The LEDs are integral with the controller body and they are sold

assembled in various formats: flexible, matrix, ring and as individual elements.

Each cell has ve pins (gure 11):

 VCC: 5V power supply for the control circuit;

 VDD: 5V power supply for the LED;

 VSS: ground;

 DIN : data input;

 DOUT : data output to be connected to the next LED in the chain.

Figure 11: Pinout of a single WS2812 module.

In NeoPixel products, connections are simpli ed and only three pins are needed:

 5V : for power supply;

 GND: for ground, to be shared with the Arduino;

 DIN : for data transmission.

Powering many LEDs requires a lot of power, so a power supply unit or battery with 5V and

capable of supplying all the current required by the LEDs must be used. Between 5V and GND,

it is advisable to put an electrolytic capacitor of a thousand microfarads to provide the inrush

required to switch on the various LEDs. The data line must be connected to the Arduino via a

470 Ω (gure 12).

There is no limit to the number of LEDs a NeoPixel element can contain. The only limitations

are: the power consumed by the strip increases for each LED added (each LED requires a

maximum of 60 mA);

Figure 12: NeoPixel and Arduino interfacing.

 the response time increases as the number of LEDs increases;

 the memory required by the microcontroller increases as the number of LEDs increases.

Libraries exist to manage communication with the individual LEDs. The management library

we will see is called Adafruit NeoPixel by Adafruit and can be installed via the Arduino Library

Manager. To use the library, its de nition must be included at the start of the sketch:

#i n c l u d e <Adafruit_Neo Pixel . h>

The initialisation of the Adafruit_NeoPixel object involves a number of parameters such as the

number of LEDs to be controlled, the pin used for communication and the driver model:

Adafruit_Neo Pixel p i x e l s = Adafruit_Neo Pixel (NUMPIXELS, PIN ,

NEO_RGB + NEO_KHZ800) ;

The driver type is speci ed by combining various ag with the following signicate:

 NEO_KHZ800: uses an 800 kHz transmission rates;

 NEO_RGB: pixels connected in RGB mode.

The pixels are initialised with:

p i x e l s . begin () ;

It is possible to control the colour of each individual pixel using its index to set RGB values with:

p i x e l s . s e t P i x e l C o l o r (num_pixel , 0 , 15 0 , 0) ;

The colours are then transmitted with:

p i x e l s . show () ;

The library functions also include a function to set the brightness of all LEDs:

s t r i p . s e t Brightness (1 0 0) ;

Circuit 7. Using the NeoPixel Strip

In this example, we will learn how to use Arduino to control the NeoPixel RGB LED strip

and how to use the Adafruit NeoPixel library to set up the NeoPixels. Figure 13 shows a very

simple example of connecting the NeoPixel LED strip to the Arduino board. To connect a strip

of NeoPixel LEDs to an Arduino board, hook up three wires:

 Power supply (+5V) goes to the plus of a power source.

 Ground (GND) goes to power source ground and should be additionally connected to the

board ground if powered from a separate power source.

 Data input (DIN) goes to any digital pin of the board.

Figure 13: Connecting a NeoPixel strip to the Arduino.

The Adafruit_NeoPixel library allows you to easily turn on a specific LED with a certain

intensity and color, or to turn it on . Each LED can be controlled individually. Here we have

four LEDs, with the rst one numbered 0. For example, to make it light up red, you would use

the command: strip.setPixelColor(0, 255, 0, 0); However, the LED will only respond to this

command if it is followed by strip.show().

#i n c l u d e <Adafruit_Neo Pixel . h>

#d e f i n e LED_PIN 6

#d e f i n e LED_COUNT 4

Adafruit_Neo Pixel s t r i p (LED_COUNT, LED_PIN, NEO_GRB + NEO_KHZ800) ;

void setup () {

s t r i p . begin (

) ; s t r i p . c l e

a r () ; s t r i p .

show () ;

}

void loop () {

s t r i p . s e t Brightness (5 0) ;

s t r i p . s e t P i x e l C o l o r (0 , 255 ,

0 , 0) ; s t r i p . show () ;

delay (10 0 0) ;

s t r i p . s e t P i x e l C o l o r (
0 ,

0 , 0 , 0) ;

s t r i p . s e t P i x e l C o l o r (
1 ,

0 , 255 , 0) ;

s t r i p . show () ;

delay (10 0 0) ;

s t r i p . s e t P i x e l C o l o r (
1 ,

0 , 0 , 0) ;

s t r i p . s e t P i x e l C o l o r (
2 ,

0 , 0 , 2 5 5)
;

s t r i p . show () ;

delay (10 0 0) ;

s t r i p . s e t P i x e l C o l o r

(2 , s t r i p . s e t P i x e l C o

l o r (3 ,

0 , 0 , 0) ;

255 , 255 , 2

5 5) ;

s t r i p . show (

) ; delay (10 0

0) ;

s t r i p . s e t P i x e l C o l o r (3 , 0 , 0 , 0) ;

}

Circuit 8. Lighting a NeoPixel Ring

The NeoPixel ring is a circular arrangement of individually addressable RGB LEDs,

allowing for a wide range of color and brightness combinations.

In the circuit shown in Figure 14, the power supply is connected to the 5V pin, the GND pin is

connected to the ground of the circuit, and the DIN pin is connected to a digital pin on the

Arduino board.

Figure 14: Neopixel ring interfacing with Arduino.

As shown in the code below, denote the pin to which the NeoPixel data input is connected

and how many LEDs there are in our ring. The next step is to actually declare our NeoPixel

object, which we'll call ring. In our setup() function, we call the begin() function on that ring.

Then, we call show() to clear all the LEDs, and nally, we set the brightness with setBrightness(),

which we call once at the beginning to tell our NeoPixel what the maximum brightness will be.

Next, let's start with a for loop that runs from 0 to the number of LEDs in our ring. Then, we

set the color of the individual LED in our ring. The function setPixelColor() takes the

arguments, in order: numLED, red, green, and blue. We'll enter i as the numLED so that the for

loop runs through each one. For the color, we use random values for red, green, and blue. Call

ring.show() afterwards to actually update the color in the ring. Finally, we add a delay of 50

milliseconds after applying each color to create a loading animation e ect.

Next, we take the same loop and reverse it. To do this, we start from the last LED and count

backwards to 0. Then, we set the pixel color to 0, 0, 0, which means no color, and add those

same two lines..

#i n c l u d e <Adafruit_Neo Pixel . h>

#d e f i n e LED_PIN 6

#d e f i n e LED_COUNT 16

Adafruit_Neo Pixel r i n g (LED_COUNT, LED_PIN, NEO_RGB + NEO_KHZ800) ;

void setup ()

{

 r i n g . begin ()

;

r i n g . show () ;

r i n g . s e t B r i g h tn e s s (5 0) ;

}

void loop () {

f o r (i n t i = 0 ; i < r i n g . numPixels () ; i ++){

r i n g . s e t P i x e l C o l o r (i , random (2 5 5) , random (2 5 5) ,

random (2 5 5)) ;

r i n g . show () ;

delay (5 0) ;

}

f o r (i n t i = r i n g . numPixels () = 1; i >= 0 ; i ==)

{ r i n g . s e t P i x e l C o l o r (i , 0 , 0 , 0) ;

r i n g . show ()

; delay (5 0) ;

}

}

Circuit 9. Controlling a NeoPixel Ring

This sketch uses the Adafruit Neopixels library (installed using the Arduino Library

Manager) to change LED colors based on readings from an analog pin. Figure 15 shows the

connection for a NeoPixel ring and a potentiometer to control the color:

#i n c l u d e <Adafruit_Neo Pixel . h>

Figure 15: Connecting a NeoPixel ring.

const i n t sensor Pin = A0 ; // analog pin for sensor

const i n t l ed Pin = 6 ; // the pin the LED s t r i p i s connected to

const i n t count = 8 ; // how many LEDs in the s t r i p

// d e c l are LED s t r i p

Adafruit_Neo Pixel l e d s = Adafruit_Neo Pixel (count , led Pin , NEO_GRB + NEO_KHZ800) ;

void setup () {

l e d s . begin () ; // i n i t i a l i z e LED s t r i

p f o r (i n t i = 0 ; i < count ; i ++) {

l e d s . s e t P i x e l C o l o r (i , l e d s . Color (0 , 0 , 0)) ; // turn each LED o f f

}

l e d s . show () ; // r e f r e s h the s t r i p with the new pixels values (a l l o f f)

}

void loop () {

s t a t i c unsigned i n t l a s t_r e a di n g = =

1;

 i n t reading = analogRead (sensor Pin) ;

i f (reading != l a s t_r ea d i n g) { // I f the v al ue has changed

// Map the analog reading to the c o l o r range of the Neo Pixel

unsigned i n t mappedSensorReading = map(reading , 0 , 1023 , 0 , 6 5 5 3 5) ;

// Update the p i x e l s with a s l i g h t d e l ay to c re ate a sweeping e f f e c t

f o r (i n t i = 0 ; i < count ; i ++) {

l e d s . s e t P i x e l C o l o r (i , l e d s . gamma32 (l e d s . ColorHSV (
mappedSensorReading , 255 , 1 2 8))) ;

 l e d s . show () ;

delay (2 5) ;

}

l a s t_r e a d i n g = reading ;

}

}

You specify the number of LEDs in the strip count, the Arduino pin the data line is connected

to ledPin, and the type of LED strip you are using (in this case: NEO_GRB+NEO_KHZ800).

To set the color of an individual LED you use the led.setPixelColor method. You need to specify

the number of the LED (starting at 0 for the rst one) and the desired color. To transfer data to

the LEDs you need to call led.show. You can alter multiple LED's values before calling

led.show to make them change together. Values not altered will remain at their previous

settings. When you create the Adafruit_NeoPixel object, all the values are initialized to 0.

The NeoPixel library includes its own function for converting a hue to an RGB value:

ColorHSV. The rst argument is the hue, the second is the color saturation, and the third is

brightness. The gamma32 function performs a conversion on the output of ColorHSV to

compensate between the way that computers represent colors and the way that humans perceive

them.

Erasmus+ KA210-VET

Small-scale partnerships in vocational

education and training

Project Title: “Using Arduinos in Vocational Training”

Project Acronym: “UsingARDinVET”

Project No: “2023-1-RO01-KA210-VET-000156616”

INTRODUCTION to ARDUINOS

(Motors module and training kit)

DC MOTORS

Overview

A DC (Direct Current) motor is a type of electric motor that runs on direct current electricity. It is

one of the most widely used types of motors due to its simplicity, reliability, and ability to provide

continuous rotation. DC motors are commonly found in appliances, toys, tools, and various other

devices that require mechanical movement.

In this document, we will explain the basic working principle of DC motors, their components, and

how they operate.

Basic Principle of DC Motor Operation

A DC motor works on the principle of electromagnetic

induction, which states that when a current-carrying

conductor is placed in a magnetic field, it experiences a

force that causes it to move. This force is known as the

Lorentz force.

Key Principle:

A current flowing through a coil of wire generates a

magnetic field around the coil.

The coil is placed in an external magnetic field (usually

created by permanent magnets or electromagnets).

The interaction between the magnetic field of the

coil and the external magnetic field generates a

force, causing the coil to rotate.

This rotational motion is transferred to the motor’s shaft, providing mechanical movement.

 Factors Affecting DC Motor Operation

Several factors can influence the performance of a DC motor:

● Voltage: The speed and torque of a DC motor are directly related to the voltage applied to it.

Higher voltage generally results in higher speed and torque.

● Speed: Increasing the applied voltage increases the motor’s speed because it increases the

current through the rotor windings, producing a stronger magnetic field and greater force.

● Torque: The torque, or rotational force, is proportional to the current. Higher current means

higher torque.

● Current: The current determines how much torque the motor can produce. Higher current

increases the torque but may also lead to overheating if the motor is not properly cooled.

Figure: SEQ Figure:_ * ARABIC 1 elements of a
DC Motor
Figure SEQ Σχήμα * ARABIC 1 Elements of a dc
motor

● Resistance: The resistance of the rotor windings affects the current flow. Higher resistance

limits the amount of current that can flow, which reduces the motor's torque. On the other

hand, lower resistance allows more current to flow, increasing torque and speed.

● Magnetic Field Strength: The strength of the stator’s magnetic field also affects the motor’s

performance. Stronger magnetic fields result in greater interaction between the stator and

rotor, producing more force and thus higher performance.

Applications

Electric DC motors are used when a smooth continuous rotation is needed. Plain DC motors are

voltage controlled so we can decide how much speed and torque the motor will produce. Plain DC

motors can’t be used when precision control over speed or position of the motor is needed. In these

cases, we usually choose step motors or servomotors instead.

Power requirements

Most of the available DC motors consumptions are higher than the maximum current than Arduino

can deliver and can cause damage to Arduino digital outputs, so we need external power supply to

the motor and control this power supply using Arduino’s output pins. The most usual way to control

DC motors in Arduino is using a motor controller or building our own controller using a transistor.

Circuit 1

Circuit Title: Driving a DC motor with a transistor

Circuit Description: This circuit uses a PNP 2N2222 transistor to control the 9V power supply using

Arduino.

Circuit 1

To build this you will need:

● 1 DC motor

● 1 PNP 2N2222 transistor

● 1 330Ω resistor

● 1 Zener diode

● 1 9V battery

PNP Transistors can be used as a electronically controlled switch. The current will flow from

emmiter pin (E) to colector pin (C) only when enought current flows from base pin (B) to colector

(C). In other words we can control the current between E and C pins using B pin.

The circuit is very simple. The transistor will allow to pass 9V current from the batery to the motor

only when pin 3 is active. As pin 3 is a PWM pin we can send different pulse witdh to control the

speed of the motor using analogWrite method.

The diode is used to avoid the motor to send current to the circuit due to inertial movement of the

motor. The resistance is used to adapt the output of the arduino pin to the correct input values of the

transistor.

The code to control the motor using pin 3 is:

int motorPin = 3; //The pin attached to the motor

void setup()

{

 pinMode(motorPin, OUTPUT); //Defines the pin 3 as output

}

void loop()

{

 analogWrite(motorPin, 255); //Full speed

 delay(2000);

 analogWrite(motorPin, 100); //Medium Speed

 delay(2000);

 analogWrite(motorPin, 10); //Low speed

 delay(2000);

 }

Circuit 2

Circuit Title: Controlling a DC motor speed using a potentiometer

Circuit Description: This circuit uses a PNP 2N2222 transistor to control the 9V power supply using

Arduino. Also a potentiometer is read using arduino analog pin A0 and used to control the speed of

the motor.

Lets modify out circuit to add a potentiometer to control motor’s speed.

Circuit 2

Example program 2: Controlling the motor with a potentiometer

int motorPin = 3; //The pin attached to the motor

int controlPin = 0; //The pin attached to the pot

int speed = 0; //The speed assingned to the motor

void setup()

{

 pinMode(motorPin, OUTPUT); //Set up the motor pin as output pin

}

void loop()

{

speed = analogRead(controlPin); //Read the potentiometer value and store it on //speed

variable

 analogWrite(motorPin, speed); //Send speed to the motor

 delay(500); //Wait 500 millisecons

 }

STEPPER MOTORS

Overview

A stepper motor is a type of electric motor that moves in discrete steps, making it ideal for precise

control of position, speed, and direction. Unlike traditional DC motors, which continuously rotate,

stepper motors divide a full rotation into multiple steps, each typically ranging from 0.9° to 1.8° per

step, depending on the motor design. This unique feature allows them to achieve very accurate and

repeatable movements without the need for encoders or other position-sensing devices.

How Stepper Motors Work

The operation of a stepper motor is based on

electromagnetism. Inside a stepper motor, there are multiple

coils or windings arranged around a central rotor. When a

current is passed through a specific coil, it creates a magnetic

field that interacts with the rotor, causing it to rotate by a

certain angle. By sequentially energizing different coils in a

controlled pattern, the rotor is moved in precise increments

(steps).

The key to controlling the movement of a stepper motor lies in the driver circuit, which regulates the

sequence and timing of current pulses sent to the coils. The driver can operate in different modes,

such as:

● Full step: Energizes one coil at a time, giving a larger step size (e.g., 1.8° per step).

● Half step: Energizes two coils alternately, allowing smaller steps and smoother motion.

● Microstepping: Divides each full step into smaller steps, improving smoothness and

resolution, and reducing vibration.

Advantages of Stepper Motors

● Precision and accuracy: Stepper motors are highly accurate, making them ideal for

applications that require exact positioning, such as 3D printers, CNC machines, and robotic

arms.

● No feedback required: Stepper motors can operate without external feedback systems (like

encoders) because the position of the rotor is determined by the number of steps moved.

● Reliability: These motors are simple in construction, leading to fewer parts that could fail.

● Low cost: Stepper motors are relatively inexpensive, making them a cost-effective solution

for many applications.

Disadvantages of Stepper Motors

● Low efficiency: Stepper motors can be less energy-efficient compared to other types of

motors, especially at higher speeds.

● Torque drop at high speeds: At high speeds, stepper motors tend to lose torque, which can

affect performance in certain applications.

● Vibration and noise: Stepper motors can produce vibrations and noise, especially when

operating at lower speeds or with low current.

Applications for Stepper Motors

Stepper motors are widely used in applications that require precise control of position and rotation,

including:

● 3D printers: To accurately move the print head and build up the material layer by layer.

● Robotics: For precise control of robotic arms and other moving parts.

● CNC machines: To move the tool or workpiece in controlled increments.

● Camera platforms: For precise pan-and-tilt control in photography and videography.

● Medical equipment: For applications such as pumps, prosthetics, and diagnostic machinery.

Stepper motors are an essential component in many applications where precision and control are

critical. Their ability to divide full rotation into small, discrete steps allows for accurate positioning,

and their simplicity makes them a popular choice for both hobbyists and industrial engineers.

Although they may not be the best option for high-speed, high-efficiency applications, their

advantages in control and reliability make them indispensable in fields such as robotics,

manufacturing, and automation. Usually, stepper motors designs use sensors to detect when the

moving objects reach the beginning or end of the path, these sensors are called limit switch sensors

and are essential to determine the initial position of a stepper motor.

Circuit 3:

Circuit Title: Moving a stepper motor one revolution forward and one revolution backwards

Circuit Description: This circuit uses a 28BYJ-48 stepper and a ULD2003 based controller to provide

the power suply to the stepper motor and avoid damaging the Arduino board.

In this example we are going to use a small stepper motor called 28BYJ-48

Figure 2 Connections of 28BYJ-48

This motor has four coils with a unipolar scheme cabling and is usually controlled by a ULN2003

based circuit that provides current to each coil to avoid damaging the I/O pins of our Arduino.

The 28BYJ-48 motor has 64 steps per revolution when use in half-step mode and has a internal 1:64

gear ratio so 64 * 64 = 4096 total steps per revolution.

In this project we are going to use:

● 1 28BYJ-48 Stepper motor

● 1 ULN2003 based controller

● Cables

● Arduino Uno board

Connect the stepper motor to the controller using the appropriate plug:

Figure 3: Stepper motor connected to the controller

Now connect the controller to the Arduino board following this schema:

Circuit 3:

To control the stepper motor we are going to use the Stepper.h library. The most useful methods of

Stepper library are:

stepper(steps, pin1, pin2, pin3, pin4) Creater a new stepper with the following

parameters:

Steps: Number of steps per revolution

Pin1 and Pin 2: Pins attached to the motor

Pin 3 and Pin 4: (Optional): Pins attached to

the motor if the motor have for cables

step(steps) Move the stepper a specific number of steps

setSpeed(rpm) Set the motor speed to a specific revolution

per minute. Please consider the maximum

speed of your motor.

The code to move the motor one revolution forward and one revolution backwards is:

#include <Stepper.h> // Include the steper control library

Stepper stepper(4096, 8, 10, 9, 11); // Create a stepper with 4096 steps per revolution

void setup() {

}

void loop {

 stepper.step(4096); //One complete revolution

 delay(5000); //wait for 5 seconds

 stepper.step(-4096); //One complete revolution backwards (negative)

 delay(5000); //wait for 5 seconds

}

Circuit 4:

Circuit Title: Moving a stepper motor like the seconds hand of a clock

Circuit Description: Using the same stepper and the same controller we are going to chage the code

to move the motor like the seconds hand of a clock: 1/60th of revolution every second.

Circuit 4

The code to move the stepper motor 1/60th turn every second is:

#include <Stepper.h> // Include the steper control library

Stepper stepper(4096, 8, 10, 9, 11); //Create a stepper with 4096 steps per revolution

void setup() {

 stepper.setSpeed(240) //240 rpm speed for quick seconds hand movement

}

void loop {

 stepper.step(68); //60 divided into 4096 equals aprox 68 steps

//per second

 delay(1000); //each second we move the motor

}

SERVO MOTORS

Overview

Servo motors are widely used in robotics, automation, and other fields where precise control of

angular position is required. They differ from regular motors in that they can rotate to a specific

position, rather than continuously rotating. This makes them ideal for tasks like moving robotic arms,

controlling the position of a camera, or adjusting the angle of solar panels.

How do servo motors work?

A servo motor is a small motor equipped with a feedback system that allows it to achieve precise

angular movement. Unlike standard DC motors, which rotate continuously in either direction, a servo

motor can only rotate through a limited range (typically 0° to 180°), and its position can be controlled

very precisely.

The servo motor consists of three key components:

● Motor: Drives the rotation.

● Feedback potentiometer: Monitors the motor's position.

● Control circuit: Receives the control signal and adjusts the motor's position accordingly.

Servo motors operate using Pulse Width Modulation (PWM) signals. The Arduino sends a PWM

signal to the servo, which adjusts the motor's position based on the duration of the signal.

Figure 4 How PWD controls servo motor position

A short pulse (1 ms) might set the servo to 0°.

A long pulse (2 ms) might set the servo to 180°.

A pulse of around 1.5 ms generally places the servo at the 90° position.

By varying the pulse width, the servo motor can be positioned anywhere within its operational range.

Applications of Servo Motors

● Robotics: Servo motors are widely used in robots to control joints, wheels, or actuators.

● Camera Gimbals: To stabilize a camera, servo motors can control the orientation of the

camera to keep it steady.

● Antenna Positioning: Servo motors are used in radio and satellite dishes to adjust antenna

direction.

● RC Vehicles: Remote-controlled cars, planes, and boats often use servos to steer and control

other mechanical components.

Servo motors are essential components for projects that require precise control of angles. With

Arduino, controlling a servo is a simple task, thanks to the Servo library, which abstracts away the

complexity of generating PWM signals. One of the biggest advantages of servos over stepper motors

is that as the servo can detect it’s own position they usually don’t need limit sensors like stepper or

DC motors.

Advantages of servo motors:

● Great precision without needing limit sensors.

● Can maintain their position even with external disturbances.

Disadvantages of servo motors:

● Limited range of movement not suitable for continuous movement

● Limited maximum speed

Example Project: Move a Servo motor:

The SG90 is a small and convenient servo motor that can be powered using Arduino pins. Bigger

servos should have an external power supply.

For this project we are going to use:

● 1 Servo motor SG90

● Cables

● Arduino Uno board

The servo control pin (yellow) needs to be connected to a PWM digital pin, we are going to use ~3

pin.

We are going to use Servo.h library to help us to manage the servo. The most important Servo.h

methods are:

attach(pin, min, max) Attach the servo variable to a pin. The pin must be a PWM digital

pin.

The optional parameters min and max set the pulse width, in

microseconds, that the servo expect to set the angle to minimum and

maximum angle. If no min or max values are provided the default

values 544 and 2400 milliseconds are used.

write(angle) Set the servo angle at desired value. The servo will move to this

position.

Circuit 5:

Circuit title: Simple movement of a servo motor

Circuit description: Using digital pin 3 of Arduino we are going to position the servo motor in 90,

180 and 0 degrees angle. The servo motor is connected to 5V and GND for power and digital pin 3 in

PWM mode to control the position.

Circuit 5

#include <Servo.h>; //The servo library

Servo myServo; //We need to create a servo object

void setup()

{

 myServo.attach(3); //Cofigure the servo pin

 myServo.write(0); //Set servo at 0 degrees angle

}

void loop()

{

 myServo.write(90); //set servo at 90 angle

 delay(1000); //wait for 1 second

 myServo.write(180); //set servo at 180 angle (max)

 delay(1000); //wait for 1 second

 myServo.write(0); //set servo at 0 angle (min)

 delay(1000); //wait for 1 second

}

Circuit 6:

Circuit title: Controlling a servo motor using a potentiometer

Circuit description: In this circuit a potentiometer connected to A0 pin in used to control the servo

motor position. The servo connections are the same that in the previous circuit and the potentiometer

is connected to 5V ground a A0 analog pin of the Arduino board.

Circuit 6

In this example the servo position is controlled by the potentiometer. To translate the potentiometer

position to servo position the function map is used:

map(value, from_min , from_max, to_min, to_max) Map a value from the [from_min,

from_max] scale to the [to_min,

to_max] scale.

#include <Servo.h>;

Servo myServo; //Creates the servo object

void setup()

{

 myServo.attach(3); //Attach the servo to pin number 3

 myServo.write(0); //position servo in 0 position

}

void loop()

{

 int position = map(analogRead(0),0,1023,0,175);//map the position of the potentiometer

 myServo.write(position); //to a angle of the servo and store the

} //mapped value in position variable

 //before sending it to the servo

Circuit 7:

Circuit title: Laser detector-controlled car barrier

Circuit description: We are going to simulate a car barrier using a servo. To detect the card a LASER

light emitter and a light detector are used. In order to facilitate the connections a proto shield is used.

For this project we are going to use:

● 1 Laser emitter module

● 1 Light detector module

● 1 Servo motor SG90

● 1 Proto shield

● Cables

● Support board

● Barrier

● Car

● Arduino Uno board

Circuit 7

Connect the proto shield over the Arduino board. Please note that there are two headers for 5V and

GND that are very convenient to connect the power cables of the sensors and the servo motor.

Connect the – and S pin of the LASER module to the GND and 5V headers of the Proto Shield:

Connect the VCC, GND and D0 pins of the light detector

module to the corresponding pins of the proto shield:

LASER Emitter Module

S 5V

Middle pin Not Connected

- GND

Light Detector Module

D0 Digital Pin 4

GND GND

VCC 5V

Turn on Arduino, point the LASER to the light sensor and adjust the sensibility of the light using a

screwdriver on the blue potentiometer of the light sensor module. The left light should only turn on

when the LASER hits on the sensor as in the image above.

Connect the Servo pins to power and data pin of the proto shield:

Servo motor

Brown GND

Red 5V

Yellow Digital Pin ~3

Attach the barrier to the servo motor. You may need to adjust the angle of the barrier if the servo

motor is not on the correct position.

Put all the elements in the support board and fix them with adhesive tape or blue tack to make sure

they stay in place.

Figure 5 Servo controlled barrier

Controlling a Servo Motor with Arduino

To control a servo motor with an Arduino, we can use the Servo library, which makes the process

easy and convenient. The library provides functions for attaching the servo to a pin, setting the

position, and moving the servo smoothly to the desired angle.

To avoid false object detection the program will read the sensor each 250ms. The program will

consider that there is a car waiting only when 4 readings in a row detect an obstacle between the

LASER and the light sensor.

#include <Servo.h>

Servo myServo;

int detections;

int sensorPin = 4; //Light sensor pin

int servoPin = 3; //Servo Motor pin. Must be a PWM pin

int open = 0; //Position of servo on opened state

int close = 128; //Position of servo on closed state

int threshold = 4; //Number of row reads to be considered as detection

int waitToPass = 4000; //Time to wait for the car to pass

void setup() {

 myServo.attach(servoPin); //Initialize the servo motor

 myServo.write(close); //Set barrier on close position

 pinMode(sensorPin , INPUT); //Set sensor pin as input pin

 detections = 0; //Initialize the number of object detection

}

void loop() {

 if (digitalRead(sensorPin)==1){ //If there is something detected

 detections = min (threshold, detections +1); //Increment number of detections by one

//until reaching threshold

 } else { //If no object is detected

 detections = max (0, detections -1); //Decrement number of detections by one

//until reaching 0

 }

 delay (250); //Four reads by second

 if (detections == threshold){ //If threshold level of detection is reached

 myServo.write(open); //Open barrier

 delay (waitToPass); //Wait for the car to pass

 }

 if (detections == 0){ //If no object is detected for threshold reads

 myServo.write(close); //Close the barrier

 }

}

Erasmus+ KA210-VET

Small-scale partnerships in Vocational

Education and Training

Project Title: “Using Arduinos in Vocational Training”

Project Acronym: “UsingARDinVET”

Project No: “2023-1-RO01-KA210-VET-000156616”

SENSORS Module and Training KIT

Sensors Module and Training KIT

The aim of this this module is to explain how sensors work in cooperation with Arduino. Several types

of Arduino-based Sensors will be presented while applications including them will be developed, in

order to be used by teachers of secondary vocational education.

About sensors

A sensor is a device with which the Arduino board interacts with the environment. A sensor actually

receives as an input a signal and responds giving as an output an electrical signal.

To be more specific, sensors receive different kinds of signals i.e. physical, chemical or biological and

respond converting them into an electric signal, in the form of current or voltage or charge. We could

also say that a sensor is a translator that converts a non-electrical value to an electrical value.

There are sensors of different types based on the applications, the input signal, the conversion

mechanism and the material used in sensor characteristics such as cost, accuracy or range.

We can find them everywhere as our world is full of different types of sensors and their simple or more

complex applications: in our offices, gardens, shopping malls, homes, cars, toys etc. That is why it is

critical to understand the way they operate and their many possibilities.

1. Photoresistor

1.1 About photoresistor

A photoresistor is a light-controlled variable resistor. A high intensity of

light incident on the surface will cause a lower resistance, whereas a

lower light intensity will cause higher resistance. The most common

usage is as a light and dark activate switch. It is also called LDR (Light

Dependent Resistor).

Let’s see how a photoresistor reacts with light.

1.2 Circuit 1

Circuit title: Luminance detection

Circuit description: The circuit detects the brightness of the room, if it falls below the set limit, it

turns on the led

What you will need:

a) Breadboard

b) Photoresistor

c) Resistor 220Ω* ,10KΩ **

d) Led 3mm

e) Arduino

* The resistor of 220Ω is the standard protection resistance of LED at 5 volts.

** The 10KΩ resistor is used to protect the Arduino from overcurrent when the photoresistor’s value decreases significantly.

The LED connected to pin 9 is set as an output. When pin 9 is HIGH, the LED will emit light; otherwise,

it will remain off.

With the photoresistor and the 10KΩ resistor, we build a voltage divider. The value that will be sent to

the processor depends on the intensity of the light on the sensor.

tips

1.3 The Code

1 const int photoantistasi = A0; // Photoresistor at Arduino analog pin A0

2 const int ledPin=9; // Led pin at Arduino pin 9

3

4 //Variables

5 int timi ; // Store value from photoresistor

6

7 void setup(){

8 pinMode(ledPin, OUTPUT); // Set lepPin - 9 pin as an output

9 pinMode(photoantistasi , INPUT);// Set photoantistasi - A0 pin as an input (optional)

10 Serial.begin(9600);// // opens serial port, sets data rate to 9600 bps

11
}

12
13 void loop(){

14 value = analogRead(photoantistasi);

15
16 //You can change the value "70."

17 if (timi > 70){

18 digitalWrite(ledPin, LOW); //Turn led off

19 }

20 else{

21 digitalWrite(ledPin, HIGH); //Turn led on

22 }

23
24 delay(500); //Small delay

25 }

The program reads the analog input. If the value exceeds ‘70’, the LED will turn on; otherwise, it will

turn off. Each program loop includes a delay of 500 milliseconds (using the command ‘delay(500)’) to

give the sensor time to take measurements.

You can modify your code and, through the serial port, monitor the sensor’s values on your

computer.

26 const int photoantistasi = A0; // Photoresistor at Arduino analog pin A0

27 const int ledPin=9; // Led pin at Arduino pin 9

28
29 //Variables

30 int timi ; // Store value from photoresistor

31
32 void setup(){

33 pinMode(ledPin, OUTPUT); // Set lepPin - 9 pin as an output

34 pinMode(photoantistasi , INPUT);// Set pResistor - A0 pin as an input (optional)

35 Serial.begin(9600);// // opens serial port, sets data rate to 9600 bps

36
}

37
38 void loop(){

39 value = analogRead(photoantistasi);

40
41 //You can change the value "25."

42 if (timi> 70){

43 digitalWrite(ledPin, LOW); //Turn led off

44 }

45 else{

46 digitalWrite(ledPin, HIGH); //Turn led on

47 }

48
49 delay(500); //Small delay

50 Serial.println(timi); // print value(after each value of the variable change line on the screen).

2. Motion sensor

The motion sensor works by detecting changes in infrared radiation or in the presence of heat and

movement within its coverage area. The most common type of motion sensor is a passive infrared

(PIR) sensor, which detects changes in the infrared radiation emitted by objects in its field of view.

2.1 About PIR sensor

The infrared motion detection sensor (Pyroelectric InfraRed Sensors) is a sensor that allows us to detect

the presence of a moving living organism in a specific area.

All living things emit infrared radiation, which suitable sensors can easily detect.

The PIR sensor consists of two areas that detect infrared radiation.

When a living organism enters the first area, a positive potential difference is created in the electronic

circuit of the sensor.

When it leaves the second area, a negative potential difference is created.

This voltage triggers the electronic circuit of the sensor and sends a logical '1' to the processor

(existence of movement in the space). The problem with this function is that it only detects a small

area, the thin zone between the two detection areas.

To increase the area range, the sensor is covered by a Fresnel lens.

Augustin Fresnel discovered the Fresnel lens and found

application in nautical lighthouses.

Its property is that it concentrates the light of a source in

a specific direction to a particular level.

Here, we use it the other way around. As it can be seen in the

picture.

The infrared radiation present in a space converges on the sensor

and thus increases the area it can detect

2.2 Circuit 2:

Circuit title: Μotion detector

Circuit description: The circuit monitors the space. If motion is detected, it activates the led

What you will need:

a) Breadboard

b) RIP sensor

c) Resistor 220Ω* ,10KΩ **

d) Led 3mm

e) Arduino

* The resistor of 220Ω is the standard protection resistance of LED at 5 volts.

** The 10KΩ resistor is used to protect the Arduino from overcurrent when the photoresistor’s value decreases

significantly.

Supply the sensor with a voltage of 5 volts. The pin signal is connected to pin 2 of the Arduino. The

LED is connected to pin 13 of the Arduino.

When the sensor detects motion, it sends bit '1' and the program lights the led

The PIR sensor has three pins: the power pin, which is connected to a 5-volt power supply; the ground

pin, which is connected to the GR pin; and the signal pin. The signal pin outputs a value of 0 when

there is no movement detected, and a value of 1 when the sensor detects movement.

2.3 The Code

 int led = 13; // the pin that the LED is attached to

int sensor = 2; // the pin that the sensor is attached to

int state = LOW; // by default, no motion detected

int val = 0; // variable to store the sensor status (value)

void setup() {

 pinMode(led, OUTPUT); // initialize LED as an output

 pinMode(sensor, INPUT); // initialize sensor as an input

 pinMode(buzzer, OUTPUT);

 tone(buzzer, 1000, 2000);

 Serial.begin(9600); // initialize serial

}

void loop(){

 val = digitalRead(sensor); // read sensor value

 if (val == HIGH) { / / check if the sensor is HIGH

 digitalWrite(led, HIGH); // turn LED ON

 delay(100); // delay 100 milliseconds

 if (state == LOW) {

 Serial.println("Motion detected!");

 state = HIGH; // update variable state to HIGH

 }

 }

 else {

 digitalWrite(led, LOW); // turn LED OFF

 noTone(buzzer);

 delay(200); // delay 200 milliseconds

 if (state == HIGH){

 Serial.println("Motion stopped!");

 state = LOW; // update variable state to LOW

 }

 }

}

The program reads the input 2 of Arduino. If the value is ‘1’, the LED will turn on, and through the

serial port, the "Motion detected !" is displayed; otherwise, the LED will turn off, and the "Motion

stopped " will be displayed.

3. Flame sensor

An important topic in building automation is fire detection. Two types of sensors are used: smoke

detection and flame sensors. Usually, when the smoke sensor is activated, we have an alarm, while if

the flame sensor is activated, the extinguishing system starts.

There are multiple ways to detect a fire, like detecting temperature change, smoke detection, etc. In all

of these, detecting temperature change would be more accurate since some fires won’t even have

detectable smoke.

3.1 About flame sensor

The IR photodiode detects IR radiation from any warm body. It

then compares this value to a specified value.

We can display the irradiance value on the sensor's analogue

output, or once the irradiance reaches a threshold value, the sensor

will change its digital output accordingly.

The flame sensor module has only very few components, which

include an IR photodiode, an LM393 comparator IC, and some

passive components.

The power LED will light up when the module is powered and the

D0 LED will turn off, when a flame is detected. The sensitivity can

be adjusted with the trimmer resistor onboard.

3.2 Circuit 3

Circuit title: Flame detector

Circuit description: The circuit monitors the area. If the flame is detected, activate the buzzer and

the alarm sounds.

What you will need:

a) Breadboard

b) Flame sensor

c) Passive buzzer

d) Arduino

tips

Supply the sensor with a voltage of 5 volts. The digital pin signal is connected to pin 2 of the Arduino.

The buzzer is connected to pin 13 of the Arduino.

When a flame is detected, the sensor sends a logical "1" to the Arduino input, and you activate, via

output 8, the buzzer with a sound frequency of 1ΚHz

3.3 The Code

int flameSens=2; //flameSens to arduino pin 2

int buzzerPin = 8; //buzzer to arduino pin 8

void setup(){

 pinMode(flameSens, INPUT); //initialize Flame sensor output pin connected pin as input

 pinMode(buzzerPin, OUTPUT); // initialize digital pin buzzerPin as an output

 Serial.begin(9600); // initialize serial communication @ 9600 baud

}

void loop(){

 if (digitalRead(flameSens) == 1)

 {

 tone(buzzerPin, 1000); //Send 1KHz sound signal

 Serial.println("** Warning!!!! Fire detected!!! **");

 }

 else

 {

 digitalWrite(LED_BUILTIN, LOW); // Led OFF

 noTone(buzzerPin); //stop sound

 Serial.println("No Fire detected");

 }

 delay(100);

}

Using the tone() function, you can create different sounds. Try generating sound

frequencies of 2400 Hz and 2900 Hz with a 1000-second delay between them.

4. Soil moisture sensor

Soil moisture sensors are popular in agriculture, landscaping, and gardening. Moisture sensing

technologies provide benefits to growers by saving them money and time spent on manual watering

systems.

They can help farmers and gardeners check moisture levels quickly, precisely and affordably. With

this, you can easily determine when to water or irrigate your field.

Soil analysis using a sensor reduces uncertainty by providing real-time data, allowing you to make

more informed decisions about how to manage resources such as water.

4.1 About soil moisture sensor

The soil moisture sensor operates straightforwardly.

The sensor includes a fork-shaped probe with two exposed

conductors inserted into the soil or wherever the moisture content is

to be measured.

These act as variable resistors (similar to potentiometers) whose

resistance varies with the soil's moisture content. This resistance varies inversely with soil moisture.

In addition, the sensor includes an electronic module that

connects the probe to the Arduino.

The module generates an output voltage based on the

probe's resistance, available at an Analog Output (AO)

pin.

The same signal is fed to an LM393 High Precision

Comparator, which digitises it and makes it available at a

Digital Output (DO) pin.

The module includes a potentiometer for adjusting the

sensitivity of the digital output (DO).

The soil moisture sensor only requires four pins to connect.

AO (Analog Output) generates an analogue output voltage proportional to the soil moisture level.

DO (Digital Output) D0 becomes LOW when the moisture level exceeds the threshold value (as set

by the potentiometer), and HIGH otherwise.

VCC supplies power to the sensor. It is recommended that the sensor be powered from 3.3V to 5V.

Please keep in mind that the analogue output will vary depending on the voltage supplied to the sensor.

GND is the ground pin

4.2 Circuit 4

Circuit title: Soil moisture detector

Circuit description: The circuit measures soil moisture as a percentage of a given value. If the

moisture is between 0-30%, the red light turns on; from 30%-60%, the blue light turns on, and above

60%, the green light turns on.

What you will need:

a) Breadboard

b) Soil moisture sensor

c) Green, blue, red led

d) a 220Ω resistor is necessary to protect the LED

e) Arduino

Note: At the start of the program, the sensor must detect the maximum moisture level so it can

accurately calculate percentages throughout the program cycle.

4.3 The Code

// Moisture Sensor Arduino Code

int greenLight = 9; //Defining pins

int blueLight = 8;

int redLight = 10;

float maximumMoistureLevel; //The max moisture level and current moisture

levels will be needed for percentage calculations

float currentMoistureLevel; // = Moisture level

void setup() {

 pinMode(8, OUTPUT); //initiate pin 8 as output

 pinMode(9, OUTPUT); //initiate pin 9 as output

 pinMode(10, OUTPUT); //initiate pin 10 as output

 pinMode (A1, INPUT); //A1 is the pin used for the Soil Moisture Sensor

 delay(100);

 maximumMoistureLevel = analogRead(A1)

 digitalWrite(greenLight, HIGH); //all the leds turn on for 2sec to show that the program has been

initiated.

 digitalWrite(blueLight, HIGH);

 digitalWrite(redLight, HIGH); ;

 delay(100);

 digitalWrite(greenLight, LOW);

 digitalWrite(blueLight, LOW);

 digitalWrite(redLight, LOW);

 Serial.begin(9600);

}

 void loop() {

 if (maximumMoistureLevel/currentMoistureLevel <= 0.3)//if the moisture level below 30%

 {

 digitalWrite(greenLight, LOW);

 digitalWrite(blueLight, LOW);

 digitalWrite(redLight, HIGH); //Switch red light on, but don't sound the buzzer

 }

else if (maximumMoistureLevel/currentMoistureLevel <= 0.8 &&

maximumMoistureLevel/currentMoistureLevel > 0.3) //if the moisture level is between 30 and

60%

 {

 digitalWrite(greenLight, LOW);

 digitalWrite(blueLight, HIGH);//Just switch yellow light on

 digitalWrite(redLight, LOW);

 }

else //Otherwise the moisture level is above 60%, and therefore it's good enough

 {

 digitalWrite(greenLight, HIGH);//Switch green light on

 digitalWrite(blueLight, LOW);

 digitalWrite(redLight, LOW);

 }

 currentMoistureLevel = analogRead(A1); //renewal of measurements

 delay(500); //Short delay to not overload the program

Serial.println("maximumMoistureLevel"); //Just so you can see the max moisture level as a reading

between 0-1023

 Serial.println(maximumMoistureLevel);

 Serial.println("currentMoistureLevel");//Just so you can see the moisture level as a reading

between 0-1023

 Serial.println(currentMoistureLevel);

}

tips

The humidity sensor has a disadvantage: because it is constantly powered in a humid

environment, it has a short lifespan. Therefore, you should only operate the sensor when you

need to take a measurement.

5. Active fire protection (AFP)

5.1 About Active fire protection (AFP)

Active Fire Protection (AFP) refers to a set of systems that require some form of action to function

effectively in the event of a fire. These actions can be manually operated, such as using a fire

extinguisher, or automated, like a sprinkler system. Irrelevant of the method, some action is necessary

for these systems to work.

A typical active fire protection system detects the fire, sounds the alarm, and then activates the

automatic extinguishing system.

5.2 Circuit 5

Circuit title: Active fire protection (AFP)

Circuit description: The circuit detects fire using a flame sensor. When a flame is detected, both an

audible alarm and a visual alert are activated, and the alarm will sound (buzzer + LED) four times. If

the flame remains, the fan is turned on for 4 seconds to extinguish it. Should the flame continue to be

present, the process repeats itself.

What you will need:

a) Breadboard

b) flame sensor

c) Red led

d) a 220Ω resistor is necessary to protect the LED

e) passive buzzer module

f) module fan

g) Arduino

h) tea light

Pinout circuit

Pin 11 🡪 buzzer

Pin 10 🡪Red led

Pin4 🡪INA

Pin 5 🡪INB

Note: The new component in the circuit is the fan module, which has four pins: Vcc, Gnd, INA, and

INB. A voltage of 5 volts is connected to Vcc, while the ground is connected to Gnd. The INA and

INB pins are used for motor control. When INA is low and INB is low, the motor stops. When INA is

low and INB is high, the motor turns clockwise.

5.3 The Code

 int flameSens=A0; //flamesensor to arduino pin 2

 int buzzerPin = 11; //buzzer to arduino pin 8

 int ledPin=10; //LED to arduino pin 8

 int INA=4; // motor shelld INA pin to arduino pin4

 int INB=5; // motor shelld INB pin to arduino pin5

 int flame = 0; // variable to store the sensor status (value)

void setup(){

 pinMode(flameSens, INPUT); //initialize Flame sensor output pin as an input to arduino

 pinMode(buzzerPin, OUTPUT); // initialize buzzer pin as an output

 pinMode(ledPin, OUTPUT); // initialize led pin as an output

 Serial.begin(9600); // initialize serial communication @ 9600 baud

 pinMode(INA, OUTPUT); // initialize led pin as an output

 pinMode(INB, OUTPUT); // initialize led pin as an output

}

void loop() {

 flame=analogRead(flameSens);

 Serial.println("flame arxh");

 Serial.println(flame); //sensor measurement display

if(flame <100)// read sensor value

{

 for(int i=1; i<=4; i++) // alarm sounds 4 times

 {

 digitalWrite(ledPin,HIGH); // turn LED on

 tone(buzzerPin,2400); //buzzer sounds at 2400 KHz

 delay (1000);

 digitalWrite(ledPin,LOW); // turn LED off

 tone(buzzerPin,2900); //buzzer sounds at 2900 KHz

 delay (1000);

 Serial.println("flame loop");

 Serial.println(flame);

 }

 digitalWrite(INA,LOW);// turn fan on clockwise

 digitalWrite(INB,HIGH);// turn fan on clockwise

 Serial.println("flame moter");

 Serial.println(flame);

 delay(4000);

}

 digitalWrite(INA,LOW);// turn fan on clockwise

 digitalWrite(INB,LOW);// turn fan on clockwise

 noTone(buzzerPin);

 Serial.println("flametelos"); //sensor measurement display

 Serial.println(flame);

}

Operation

When a flame is detected, the alarm will sound (buzzer + LED) four times, and then the

fan will turn on for 4 seconds.

6. Automatic plant watering system

Using an automatic plant watering system is an efficient way to conserve water while taking care of

your garden. This system delivers the exact amount of water needed for plants, in contrast to hand

watering or using a sprinkler system, which can easily result in overwatering or underwatering.

6.1 Circuit title: Automatic plant watering system

Circuit description: This circuit measures the soil moisture level. If the moisture level falls below a

predetermined threshold, the valve opens, allowing water to flow to the plant, and the green LED turn

on. When the moisture level exceeds the specified threshold, the valve closes to stop the watering, and

the blue LED illuminates.

What you will need:

a) Breadboard

b) moisture sensor (with module)

c) Led green, led blue

d) 220Ω resistor is necessary to protect the LED.

e) solenoid valve

f) small water tank

g)Arduino

h) small pot with plant

Pinout circuit

Pin 8 🡪 led, green

Pin 9 🡪led blue

A1 🡪analogue input moisture sensor

Pin 12 🡪 valve

6.3 The Code

// Moisture Sensor Arduino Code

int greenLight = 9; //Defining pins

int blueLight = 8;//Defining pins

int moistureLevel=A1;//Defining pins

int valvePin=10;//Defining pins

int maxMoistureLevel; //The max moisture level

int minMoistureLevel; //The max moisture level

int currentMoistureLevel;// current moisture level

void setup() {

 pinMode(blueLight,OUTPUT);//initiate pin as output

 pinMode(greenLight,OUTPUT);//initiate pin 9 as output

 pinMode(moistureLevel, INPUT); //A1 is the pin used for the Soil Moisture

Sensor

 pinMode(valvePin, OUTPUT); //initiate pin 9 as output

 Serial.begin(9600););// initialize serial communication @ 9600 baud:

}

void loop() {

 maxMoistureLevel=700;//set the variable to 700

 minMoistureLevel=400;//set the variable to400

 currentMoistureLevel=analogRead(moistureLevel);//Assign the variable the

current value

 if (currentMoistureLevel>1000)//if the moisture level below 1000 green and

blue lights turn on

 {

 digitalWrite(greenLight,HIGH);//Switch light on

 digitalWrite(blueLight,HIGH);//Switch light on

 digitalWrite(valvePin,LOW); //Switch light off

 }

 else

if((currentMoistureLevel>minMoistureLevel)&&(currentMoistureLevel<1000))//if the

moisture level is in between 30 and 60%

 {

 digitalWrite(greenLight, HIGH);

 digitalWrite(blueLight, LOW);// led light on

 delay(3000);

 digitalWrite(valvePin, HIGH);// open the valve

 delay(500);

 digitalWrite(valvePin, LOW);// close the valve

 delay(300);

 digitalWrite(greenLight, LOW);// led light off

 }

 if (currentMoistureLevel>maxMoistureLevel){//if the moisture level below 30%

 digitalWrite(blueLight,HIGH);

 }

 delay(500); //Short delay

 Serial.println("MoistureLevel");

 Serial.println(currentMoistureLevel);

}

7. Security light

Security lights are electric lights, usually outside a building, that switch on when someone or something

moves near them. Burglars try to break into the house in the early hours, but neighbours can spot them

when security lights come on. This system should be more efficient by adding a brightness sensor; the

light will illuminate only when the surrounding light is low, conserving energy.

 7.1 Circuit title: Security light

Circuit description: This circuit features two sensors: a motion sensor (PIR) and a brightness sensor.

When the monitoring area's brightness level is low and motion is detected, the light will turn on for

three seconds.

What you will need:

a) Breadboard

b) photoresistor

c) module Led

d)10K resistor

e) sensor PIR

g) Arduino

Pinout circuit

Pin 2 🡪 PIR input

Pin A2 🡪input brightness sensor

Pin 3 🡪Led

7.3 The Code

//Constants

const int pResistor = A2; // Photoresistor at Arduino analog pin A2

const int ledPin=3; // Led pin at Arduino pin 9

//Variables

int value; // Store value from photoresistor (0-1023)

void setup(){

 pinMode(ledPin, OUTPUT); // Set lepPin - 9 pin as an output

 pinMode(pResistor, INPUT);// Set pResistor - A0 pin as an input (optional)

 Serial.begin(9600); //rate at which arduino communicates with laptop

}

void loop(){

 value = analogRead(pResistor);//reads the analog data from the sensor

 if (value < 700){

 digitalWrite(ledPin, LOW); //Turn led off

 }

 else{

 digitalWrite(ledPin, HIGH); //Turn led on

 }

 delay(500); //Small delay

 Serial.println(value); //prints on the serial monitor

}

8. Application

All sensor projects can be applied to the corresponding construction. The pinout for this construction

is identical to that of the Individual project.

Pinout circuit

Pin A0 🡪 flame sensor

Pin 2 🡪 PIR output

Pin 3 🡪Led module

Pin4 🡪INA motor

Pin 5 🡪INB motor

Pin 8 🡪 led, green

Pin 9 🡪led blue

Pin 10 🡪Red led

Pin 11 🡪 buzzer

Pin 12 🡪 valve

Pin A0 🡪analogue input flame sensor

Pin A1 🡪analogue input moisture sensor

Pin A2 🡪analogue input brightness sensor

With the following program, you can run projects: Automatic plant watering system, active fire

protection, and security light at the same time, without needing to load their programs individually.

// complete program

int sensorPir = 2; //Sensor PIR at Arduino pin 2

int ledPin=3; // Led pin at Arduino pin 9

int INA=4; // motor shelld INA pin to arduino pin4

int INB=5; // motor shelld INB pin to arduino pin5

int blueLight = 8; //Defining pins

int greenLight = 9; //Defining pins

int redLedPin=10; //Defining pins

int buzzerPin = 11; //Defining pins

int valvePin=10; //Defining pins

int flameSens=A0; //flamesensor to arduino pin A0

int moistureLevel=A1; //moisture sensor to arduino pin A1

int sensorPhotores = A2; // Photoresistor at Arduino analog pin A2

int maxMoistureLevel; //variable for the max moisture level

int minMoistureLevel; //variable for the min moisture

level

int currentMoistureLevel; // variable for the current moisture

level

int valuePhoto; //variable to store value from

photoresistor (0-1023)

int valuePir; // variable to store value from sensor

PIR (0-1023)

int flame = 0; // variable to store the sensor status

(value)

void setup() {

 pinMode(ledPin, OUTPUT); // Set lepPin as an output

 pinMode(sensorPhotores, INPUT);// Set sensorPhotores pin as an input

 pinMode(sensorPir, INPUT); // Set sensorPhotores pin as an input

 pinMode(flameSens, INPUT); //initialize Flame sensor output pin as an

input to arduino.

 pinMode(buzzerPin, OUTPUT); // initialize buzzer pin as an output

 pinMode(redLedPin, OUTPUT); // initialize redled pin as an output

 pinMode(INA, OUTPUT); // initialize INA fan pin as an output

 pinMode(INB, OUTPUT); // initialize INB fan pin as an output

 pinMode(blueLight,OUTPUT); //initiate blue light pin as output

 pinMode(greenLight,OUTPUT); //initiate green light pin as output

 pinMode(moistureLevel, INPUT);//A1 is the pin used for the Soil Moisture

Sensor

 pinMode(valvePin, OUTPUT); //initiate pin 9 as output

 maxMoistureLevel=700; //set the variable to 700

 minMoistureLevel=400; //set the variable to400

 Serial.begin(9600); // initialize serial communication @ 9600

baud:

}

void securityLight(){ //method for security light

 digitalWrite(ledPin, HIGH); // turn LED on

 delay(5000);

 digitalWrite(ledPin, LOW); // turn LED off

}

void flameSens1(){ //method for fire

 for(int i=1; i<=4; i++) // alarm sound 4 times

 {

 digitalWrite(redLedPin,HIGH); // turn LED on

 tone(buzzerPin,2400); //buzzer sounds at 2400 KHz

 delay (1000);

 digitalWrite(redLedPin,LOW); // turn LED off

 tone(buzzerPin,2900); //buzzer sounds at 2900 KHz

 delay (1000);

 Serial.println("flame loop"); //display variable 'flame'

 Serial.println(flame);

 }

 digitalWrite(INA,LOW); // turn fan on clockwise

 digitalWrite(INB,HIGH); // turn fan on clockwise

 noTone(buzzerPin); // stop buzzer

 delay(4000);

 digitalWrite(INA,LOW); // turn fan off

 digitalWrite(INB,LOW); // turn fan off

}

void watering(){ //method for watering

 if (currentMoistureLevel>1000) //if the moisture sensor it is not

on the ground

 {

 digitalWrite(greenLight,HIGH); //Switch light on,shows the sensor

is not on the ground

 digitalWrite(blueLight,HIGH); //Switch light onon,shows the

sensor is not on the ground

 digitalWrite(redLedPin,LOW); //Switch light off on,shows the

sensor is not on the ground

 }

 else

if((currentMoistureLevel>minMoistureLevel)&&(currentMoistureLevel<1000))//if the

moisture level is below the min level

 {

 digitalWrite(greenLight, HIGH); // led light on

 digitalWrite(blueLight, LOW); // led light off

 delay(3000);

 digitalWrite(redLedPin, HIGH); // open the valve

 delay(500);

 digitalWrite(redLedPin, LOW); // close the valve

 delay(300);

 digitalWrite(greenLight, LOW); // led light off

 }

 if (currentMoistureLevel>maxMoistureLevel){ //if the

moisture level is above the min level

 digitalWrite(blueLight,HIGH); // led light on

 }

 Serial.println("MoistureLevel"); // display the moisture

 Serial.println(currentMoistureLevel);

 }

void loop() {

 valuePhoto = analogRead(sensorPhotores); //Assign the variable the

current value

 valuePir=digitalRead(sensorPir); //Assign the variable the

current value

 flame=analogRead(flameSens); //Assign the variable the

current value

 currentMoistureLevel=analogRead(moistureLevel); //Assign the variable the

current value

 if (valuePhoto > 800&& valuePir==HIGH) //if there is darkness and

movement

 {

 securityLight();

 }

 if(flame <450) //if there is fire

 {

 flameSens1();

 }

 if((currentMoistureLevel>minMoistureLevel)&&(currentMoistureLevel<1000))//if the

moisture level is below the min level and //if the moisture sensor is on the

ground

{

 watering();

 }

 Serial.println("valuePhoto"); //display the variable 'valuePhoto'

 Serial.println(valuePhoto); //display the variable 'valuePhoto'

 Serial.println("flame"); //display the variable 'valuePhoto'

 Serial.println(flame); //display the variable 'valuePhoto'

 delay(500);

}

Annexex

For more info,

please visit our project website:

www.ardinvet.com

http://www.ardinvet.com/

“This project is Funded by the

Erasmus+ Program of the European Union.

However, European Commission cannot be

held responsible for any use which may be

made of the information contained therein”

BIBLIOGRAPHY:

1. Arduino: The ultimate Arduino guide for beginners, including Arduino

programming, Arduino cookbook, tips, tricks, and more! Craig Newport;

2. Introduction to microcontrollers and programmable logic controllers - Author

Viorel-Constantin Petre, Publisher: Matrixrom Publishing House;

3. Arduino: Getting Started With Arduino and Basic Programming With Projects

(Advanced Methods to Learn Arduino Programming) - Ernest Leclerc;

4. Arduino Programming – Editura Nelly B.L. International Consulting LTD.,

March-2020.

