
Digital Logic Design
Part 1: Numbering Systems

• Types of numbering systems
Type From To
Binary 0 1

Octal 0 7

Decimal 0 9

Hexadecimal 0 9 + A to F

• How to Switch Between Systems from
Binary

Example: Switch the number 5 from Decimal to Binary

(5)10 =

5 2 1
2 2 0

1 2 1

0 2 0

(101)2

Exercise: Switch the numbers 1-9 from Decimal to Binary

Decimal Binary

1 1

2 10

1. Take the number to be switched (for example (5)10)

2. Divide The Number By The system's size (2 for binary, 8 for Octal etc),
writing down the quotient if there is any, or putting 0 if there isn't

3. take the quotient from step 2, and write it from bottom to top



3 11

4 100

5 101

6 110

7 111

8 1000

9 1001

•Note: Numbers Can Be From more than 1 system

• How to Switch Between Systems to
Binary

Example: Switch the number 010110 from Binary to Decimal

(010110)2 = 0x20 + 1x21 + 1x22 + 0x23 + 1x24 + 0x25

= 0 + 2 + 04+ 0 + 16 + 0 = (22)10

Example: Switch the number 35 from Octal to Decimal

(35)8 = 5x80 + 3x81

5 + 24 = (29)10

• How to Switch Systems From Binary to
Octal

Example: Switch the number 110110111011 from Binary to Octal

1. Take the number to be switched and count how many ranks there is (ones,
tens, etc)

2. Calculate The Number in binary Using The Formula "Ar* Br +......" where r is
the rank A is the number and B is the System's size

1. Take the number to be switched and start taking 3 digits (ones to hundreds,
thousands to 100 thousands etc)

2. Convert each 3 digits to Decimal
3. write down the new number, from right to left



(110110111011)2

110 110 111 011
6 6 7 3

(6673)8

• How to Switch Systems From Octal to
Binary

Example: Switch the number 115 from Octal to Binary

1758

1 7 5
001 111 101

(001111101)2

• How to Switch Systems From Binary to
Hexadecimal

Example: Switch the number 11011011011 from Binary to Hexadecimal

(1011011110111)2

0001 0110 1111 0111
1 6 15 = F 7

(16F7)16

1. Take the number to be switched and start taking each digit separately
2. Convert each 3 digits as if it was decimal to Binary (3 degits)
3. write down the new number, from right to left

1. Take the number to be switched and start taking 4 digits (ones to thousand,
10 thousands to 10 millions etc)

2. Convert each 4 digits to binary
3. write down the new number, from right to left



• How to Switch Systems From
Hexadecimal to Binary

**Example:** Switch the number 16F7 from Hexadecimal to Binary

(16F7)16

1 6 F 7
0001 0110 1111 0111

(1011011110111)2

• How to Switch Systems From
Hexadecimal to Octal (and vice versa)

Example: Switch the number F from Hexadecimal to Octal

(F)16 = (1111)2

001 111

1 17

= (17)8

Example: convert the number 17 from Octal to Hexadecimal

(17)8 = (1111)2

1111

F

= (F)16

1. Take the number to be switched and start taking each digit separately
2. Convert each digit as if it was decimal to Hexadecimal (4 digit numbers)
3. write down the new number, from right to left

1. Take the number to be switched and switch it to Binary
2. Convert The Binary Number to The New System



How to switch Decimal Numbers
Note: Decimal Numbers as in numbers with a decimal (,), also named
fractions..... ie: 7.3

Note: we multiply the numbers after the decimal, for example if we have 1.2 during
multiplication we only multiply the .2, not the whole number

Example, convert (7.3)10 to binary

7 = 111

,3 * 2 = .6

.6 * 2 = 1.2

.2 * 2 = .4

.4 * 2 = .8

.8 * 2 = 1.6 (loop, stop before here)

= 0100

(7.3)10 = (111.0100)2

Part 2: Boolean Algebra (logic Gates)
• Primary operator types

Type Expression Arabic
Name

Explanation

or add أو binary, 
needs one 
component 
to be on for 
it to be on

1. convert the number before the decimal as normal
2. to convert the number after the decimal, multiply that number by the system's

base (2 for binary etc), until a loop forms
3. when you reach a loop, take each number before the decimal and write it



and multiplication و binary, 
needs all 

components 
to be on for 
it to be on

not X -> X̄ / X̄  -> 
X

غير Uniary, 
needs the 
component 
to be off for 
it to be on 

• Secondary operator types

NOTE: we use the number 1 to represent on, and the
number 0 to represent off

The Truth Table
General Rule: we can calculate how many options

there is in a logic gate by the formula 2n, where n is the
number of components

Example: create a truth table for 2
components

A B OR AND

0 0 0 0

1. Nand
2. Nor
3. Exor
4. Exnor



A B OR AND
0 1 1 0

1 0 1 0

1 1 1 1

Note: you can use the Octal system to memorize how a
3 component truth table

A B C Equivalant

0 0 0 0

0 0 1 1

0 1 0 2

0 1 1 3

1 0 0 4

1 0 1 5

1 1 0 6

1 1 1 7

Note: you can use the Hexadecimal system to
memorize how a 4 component truth table looks like

A B C D Equivalant

0 0 0 0 0

0 0 0 1 1

0 0 1 0 2

0 0 1 1 3

0 1 0 0 4

0 1 0 1 5

0 1 1 0 6

0 1 1 1 7

1 0 0 0 8

1 0 0 1 9

1 0 1 0 A

1 0 1 1 B



A B C D Equivalant
1 1 0 0 C

1 1 0 1 D

1 1 1 0 E

1 1 1 1 F

• Rules of Boolean Algebra
Rule Number 1:
if X = 1, then X̄  = 0 and vice versa.

Rule Number 2: Addition and Multipication
Rules
A + 0 = A

A * 1 = A

A + A = A

A + Ā = 1

• Proof

A Ā =
1 0 1

0 1 1

A * 0 = 0

A * Ā = 0

• Proof

A Ā =
1 0 0

0 1 0

tldr



A Ā A + Ā A * Ā
1 0 1 0

0 1 1 0

Rule Number 3: Multiple Component Rules
A + B = B + A

A B = B A

• Example

X + Y + Z = X +( Y + Z) =( X + Y )+ Z

X Y Z = X ( Y Z) = (X Y) Z

Rule Number 4: Distribution Rules
A (B + C) = (A B) + (A * C)

A + (B C) =( A + B ) (B + C)

• Proof

A B C (B * C) (A +B) (B + C)
0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 1

0 1 1 1 1 1

1 0 0 0 1 0

1 0 1 0 1 1

1 1 0 0 1 1

1 1 1 1 1 1

Rule Number 5:
X + X̄ Y = X + Y

X * (X̄ +Y) = XY

• Proof



X Y X̄ Y X+Y XY X̄  + Y X(X̄ +Y)
0 0 0 0 0 1 0

0 1 1 1 0 1 0

1 0 0 1 0 0 0

1 1 0 1 1 1 1

• proof that X + X̄ Y = X + Y

x 1 + X̄  Y

x ( 1 + y)+ X̄  Y -> 1+ y = 1

X (1 +y ) + X̄  * Y = X + XY + X̄ Y

(taking y as a common factor)

X + Y(X + X̄ ) -> (X+ X̄ ) = 0

X + Y

Rule Number 6: De Morgan's Rules
Rule 1: x̿  = x

Rule 2 = x̄  + ȳ = not (x * y)

Exercises: Simplify the following boolean
expressions

A ( B + B̅ ) + + A̅  (C+ C̅ )

A + A̅  = 1

x y (1+ z̄ ) + xy (z̄  + z)

xy + xy = xy

1. f=A B + A B̅  + A̅  C +A̅  C̅

2. F = x y +x y z̄  +x y z̄  + x y z

3. F = x + xyz + x̄  y z + wx + x̄  y + w̅  x



x + yz(x + x̄  ) + x (w + w̅ ) + x̄  y

x + yz + x + x̄  y ---> x + x =x

x +yz + x̄  y ----> x + x̄  y = x + y

x + y + yz

x + y (z + 1)

x + y

x + x̄  ȳ (z + z̄ ) + ȳ z̄  + x + ȳ

x + x̄  ȳ (z + z̄ ) + ȳ (z̄  +1)

x + x̄  ȳ + ȳ

x + ȳ (x̄  + 1)

x + ȳ

!(!(x + ȳ + z)) + !(!(ȳ + z̄ ))

x + ȳ + z + !(!(ȳ + z̄ ))

x + ȳ + z + ȳ + z̄

x + ȳ + ȳ +( z + z̄ )

x + ȳ +1 = 1

!( !(x + ȳ)) !(!( x̄ +y)) !(!(x̄  + w)) !(!(ȳ + w̅  ))

(x + ȳ) ( x̄ +y) (x̄  + w)) (ȳ + w̅  )

(xx̄  + x̄ ȳ + xy + y ȳ) == (0+ x̄ ȳ + xy + 0)

( x̄ ȳ + x̄ w̅  + ȳw + ww̅ ) == ( x̄ ȳ + x̄ w̅  + ȳw + 0)

(xy +x̄ ȳ ) (x̄ ȳ + x̄ w +ȳw)

4. F = x + x̄  ȳ z + x̄  ȳ z̄  + ȳ z̄  + ȳ

5. !(!(x + ȳ + z) !(ȳ + z̄ ))

6. F =!( !(x + ȳ)) + !( x̄ +y)) + !(x̄  + w) + !(ȳ + w̅  ))



(xx̄ yȳ + xx̄ yw̅  + xyȳw +x̄ ȳx̄ ȳ + x̄ ȳx̄ w + x̄ ȳȳw)

x̄ ȳ(1+w+w̅ ) = x̄ ȳ

Building of Logic Circuits
F = ab + a̅ b̅  +ab̅

!((a+b)(b̅ +c̅ )+a̅ b̅ )

Conanical Forms



Standard Forms
the form which all functions include all variables

f = xyz+ x̄ ȳz +x̄ yz + xyz̄  + ........

Non Standard Forms
the form which not all functions include all variables

f = xyz+ x̄ ȳz +x̄ z + xy + ........

Standard Forms take 1 of 2 Shapes

we can call it minterms (m)

{m (m0,m1......mn)

f(a,b,c) = p (p0,p1......pn)

A B C Minterms Maxterms

0 0 0 m = 0 p =  7

0 0 1 m = 1 p = 6

0 1 0 m = 2 p = 5

0 1 1 m = 3 p = 4

1 0 0 m = 4 p = 3

1 0 1 m = 5 p = 2

1 1 0 m = 6 p = 1

1 1 1 m = 7 p = 0

1. Sum of Product Form (صيغة جمع المضاريب): A number of AND functions tied by a
OR function
F(ABC) = ab̅ c + a̅ b̅ c̅  + abc̅ .......

2. Product of Sum (صيغة ضرب المجاميع): A number of OR functions tied by an AND
function
f(a,b,c) =( a+ b̅  + c ) (a̅ +b̅ +c) (a+b̅ +c̅ ).........
maxterms



conclusion: the minterms and maxterms compliment each other, as when added

up they should make a number equal to the number of 2functions-1

{m = !{p
m =!p

F = a̅  + bc

f(a,b,c) = a̅  + bc

to make it to standard form we need

for (a̅ ) =a̅  (b̅ c̅  + bc̅ + b̅ c +bc)

for (bc) = (bc) (a+a̅ )

the final product will be

a̅ b̅ c̅  + a̅ bc̅ + a̅ b̅ c +a̅ bc + a̅ bc + abc

{m(0,1,2,3,7)

Karnaugh Map
2 form karnaugh map

form ȳ y
x̄ 00 01

x 10 11

3 form karnaugh map = x + x̄ y = x + y

form ȳz̄ ȳz yz yz̄
x̄ 000 = 0 001 = 1 011 = 3 010 = 2

x 100 = 4 101 = 5 111 = 7 110 = 6

4 form karnaugh map

form z̄ w̅ z̄ w zw zw̅
x̄ ȳ 0000 = 0 0001 = 1 0011 = 3 0010 = 2

x̄ y 0100 = 4 0101 = 5 0111 = 7 0110 = 6

xy 1100 = C 1101 = D 1111 = F 1110 = E



form z̄ w̅ z̄ w zw zw̅
xȳ 1000 = 8 1001 = 9 1011 = B 1010 = A

How to Simplify equations using Karnaugh
Maps

example : simplify the following equations
using a k-map

(a+c̅ )(b+c)
A B C result

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

form a̅ b̅ a̅ b ab ab̅
c̅ 0 1 1 0

c 0 0 1 1

c̅ a̅ b +c̅ ab --> c̅ b(a+a̅ ) --> c̅ b

cab+ cab̅  --> ca(b+b̅ ) --> ca

1. Make A truth table for all the variables in an equation, and calculate the result
of the operation, adding t/1 or f/0, depending on the result

2. make a karnaugh map for the variables, adding 1 to where it says so in the
truth table

3. draw a square over as many 1 is possible, as long as the number of 1s is a
power of 2 (2,4,8 etc), and they are near each other (top and bottom/left and
right of each other)

4. simplify each square seperatly, then add them together in or statments



c̅ b + ca

a̅ c + a̅ b + ab + ac
A B C result
0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

form a̅ b̅ a̅ b ab ab̅

c̅ 0 1 1 0

c 1 1 1 0

a̅ bc + a̅ b̅ c --> a̅ c

ca̅ b + cab + c̅ a̅ b + c̅ ab --> b

a̅ c + b

a̅ c̅  + bc̅  + ab̅ c
A B C result
0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

form a̅ b̅ a̅ b ab ab̅
c̅ 1 1 1 0



form a̅ b̅ a̅ b ab ab̅
c 0 0 0 1

a̅ b̅ c̅  + a̅ bc̅  --> a̅ c̅

a̅ bc̅  + abc̅  -->bc̅

ab̅ c

a̅ c̅  + bc̅  + ab̅ c

c̅  (a̅ b̅ đ+d) + ađc + đ
A B C D Result
0 0 0 0 1

0 0 0 1 0

0 0 1 0 1

0 0 1 1 0

0 1 0 0 1

0 1 0 1 0

0 1 1 0 1

0 1 1 1 0

1 0 0 0 1

1 0 0 1 0

1 0 1 0 1

1 0 1 1 0

1 1 0 0 1

1 1 0 1 0

1 1 1 0 1

1 1 1 1 0

form c̅ đ c̅ d cd cđ

a̅ b̅ 1 1

a̅ b 1 1

ab 1 1

ab̅ 1 1



a̅ b̅ c̅ đ + a̅ bc̅ đ + abc̅ đ +ab̅ c̅ đ + a̅ b̅ cđ + a̅ bcđ + abcđ + ab̅ cđ --> c̅ đ +cđ

đ

(a̅ +b)(a+b̅ +c̅ )
A B C result
0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

form a̅ b̅ a̅ b ab ab̅

c̅ 1 1 1 0

c 1 0 1 0

c̅ a̅ b̅ + ca̅ b̅  --> a̅ b̅ (c̅ +c) --> a̅ b̅

c̅ a̅ b + c̅ ab --> c̅ b (a̅ +a) --> c̅ b

c̅ ab + c̅ ab --> ab(c̅ +c)--> ab

a̅ b̅  + c̅ b + ab

a̅ c+ a̅ b + ab̅ c+ bc
A B C result
0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0



A B C result
1 1 1 1

form a̅ b̅ a̅ b ab ab̅
c̅ 0 1 0 0

c 1 1 1 1

ca̅ b̅  + ca̅ b + cab + cab̅  --> c(a̅ b̅ +a̅ b+ab+ab̅ ) -->c(a̅ +a) --> c

ca̅ b + c̅ a̅ b --> a̅ b (c̅ +c) --> a̅ b

a̅ b + c

Don't Care
used in a k-map

looks like a d or an x

only used to make the square bigger, never taken alone, used as seen fit

example: solve the following k-map
F(a,b,c,d)

{(m2,m3,m5,m9,m12)

d(m0,m1,m11,m7)

form c̅ đ c̅ d cd cđ
a̅ b̅ d d 1 1

a̅ b d

ab 1

ab̅ 1 d

a̅ b̅ c̅ đ + a̅ b̅ c̅ d + a̅ b̅ cd + a̅ b̅ cđ = a̅ b̅

a̅ b̅ c̅ d + a̅ b̅ cd + ab̅ c̅ d + ab̅ cd = a̅ b̅ d(c̅  + c) + ab̅ d (c̅  + c) --> b̅ d(a̅  +a) --> b̅ d

a̅ b̅  + b̅ d + abc̅ đ

f(a,b,c)
{(m0,m1,m5)



d(m3,m6)

form a̅ b̅ a̅ b ab ab̅
c̅ 1 1 d 0

c 0 1 0 d

a̅ b̅ c̅  + a̅ bc̅  --> a̅ c̅  (b̅ + b) --> a̅ c̅

a̅ bc̅  + a̅ bc --> a̅ b (c+c̅ ) --> a̅ b

a̅ c̅  + a̅ b

Half adder Circle
normally, 1+1 = 2, however in binary 1+1 = 10, where we take the 0 and

normally, 1+1 = 2, however in binary 1+1 = 10, where we take the 0 and make it
sum, and the 1 gets carried so the sum becomes 0, and the carry become 1,
where if we add another 1 to the operation it becomes 0 +1, where the sum
becomes 1 and the carry stays 1 as well

A B S C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

form a̅ a

b̅ 0 1

b 1 0

s = a̅ b + ab̅

a xor b

(5)10 + (3)10

1. Sum (S): Output of a half adder representing the result of XOR operation on
input bits A and B.

2. Carry (C): Output of a half adder representing the result of AND operation on
input bits A and B.



1 0 1 + 0 1 1 = 1000

x y z S C
0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

s =

form ȳz̄ ȳz yz yz̄
x̄ 0 1 0 1

x 1 0 1 0

s = x̄ ȳz̄  + x̄ yz̄  + xȳz̄  + xyz

c =

form ȳz̄ ȳz yz yz̄
x̄ 0 0 1 0

x 0 1 1 1

xȳz̄  + xyz̄  = xz̄

xyz̄ + xyz = xy

xyz + x̄ yz = yz

c = xz̄  + xy + yz

Full Adder
basically a half adder but for more than 2 variables (3 or more)

x y z S C
0 0 0 0 0



x y z S C
0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

s =

form ȳz̄ ȳz yz yz̄

x̄ 0 1 0 1

x 1 0 1 0

s = x̄ ȳz̄  + x̄ yz̄  + xȳz̄  + xyz

c =

form ȳz̄ ȳz yz yz̄

x̄ 0 0 1 0

x 0 1 1 1

xȳz̄  + xyz̄  = xz̄

xyz̄ + xyz = xy

xyz + x̄ yz = yz

c = xz̄  + xy + yz

The Decoder
basically used to transfom numbers into letters using the ASCI code

The general property of a decoder is that it has 2n output lines for n input lines.
Each output line corresponds to a unique combination of input values.

example 2 = 22



out of all numbers produced, only one is active, where the rest are inactive until
called

example 2 = 22

00 - active
01 - inactive
10 - inactive
11 - inactive

Q) create a decoder for a 3 sum of product where most inputs are 1

basically if 2 or more variables = 1, then f = 1

A B C result
0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Drawing

Q) create a decoder using a full adder

x y z S C



0 0 0 0 0x y z S C
0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Drawing

Enable Signal
gets into all gates and decides which one is active in a decoder

The Encoder
Sequential circuit contains an n input and n output

log 2n >= n

does the opposite of a decoder

2n -> n

from decimal to binary



the outputs of an encoder are the inputs of a decoder and vice versa

example: using an incoder, solve the following

A B

0 0

0 1

1 0

1 1

y0 y1 y2 y3

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

The Multiplexer (mux) / Data Selector



Multi input Sequential logic circuit, that has one output

2n input

1 output

uses a select signal to pick which input to output

log 24 = 2

log 28 = 3

Question: design a circuit using a
multiplexer
f = {m(0,1,2,5,9,10,13,15)

2n = 16

n = 4

x0,x1,x2,x3

we take the biggest value which is x3

i0 i1 i2 i3 i4 i5 i6 i7
x̄ 3 0 1 2 3 4 5 6 7

x3 8 9 10 11 12 13 14 15

circle the min terms values

i0 i1 i2 i3 i4 i5 i6 i7
x̄ 3 0  # 1 # 2 # 3 4 5 # 6 7

x3 8 9# 10 # 11 12 13 # 4 15#

x̄ 3 1 1 0 0 1 0 x3

if there are no circles in a row we put 0
if there is a circle on top but not on bottom we put x̄ 3 (note: letter and number are
interchangeable)
if there are circles on top and bottom we put 1



if there is a circles on bottom and not top we put x3 (note: letter and number are
interchangeable)

drawing tldr: using the table we made above, connect each i with the appropriate
value (0,1,x̄ ,x̄ )

De-multiplexer (de-mux)
a Combinational Circuit that does the opposite operation of a multiplexer 1 input

many outputs



x0 x1 y0 y1 y2 y3
0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

y0 = x̄ 0 x̄ 1 y0

y1 = x̄ 0 x1 y1

y2= x0 x̄ 1 y2

y3 = x0 x1 y3



Drawing
tldr: follow the truth table results to draw, add an I that links to every output

The ROM
Stands for "Read Only Memory"

The Memory which we can only read but cannot write on it

the OS and other consts are typically stored on it

it uses addresses to get data

made from cells, that store the necessary data

all memory types are made using different locations, that are found from
addresses , with every location having a different address



the shape is similar to a decoder



Examples
example 1.create a rom that takes n inputs
f = {m(0,3,4,6,7)



Example 2. create a rom for a function



example 3.create a logic circuit that has a 3
bit input and outputs the square of an input



Sequential Logic Circuit
Asynchronic غير متزامنة

Synchronic متزامن

Sequential Logic Circuit have what's called memory elements, and feedback from
the input and output



flip-flops
المرجاح

قلاب بالسوري

نطاط بالعراقي

electronic circuits with two stable states, that are 1 and 0

if found in 0, it's always stable in 0 until the data is changed, and vice versa

example: counters

it can store either 0 or 1, which is why it's an important component in the memory

has atleast one input, and on it the state of the flip flop depends

generally and most of the time, the flip flop circuits have more than 1 inputs and 2
outputs, with each output storing 1 bit (either 1 or 0)

the most important (and simplest) example is Not/or (latch circuit)



Adder/Substractor
in computers there is no such thing as subtractors, instead there is complements
(basically the number that when added to another, equals the number of digits in a
system (2 for binary 8 for octal etc ))

two's complement = one's complement + 1

example --> 011+ 1 = 100

how to add and substract binary numbers
1. Initialize:

Draw a series of full adders equal to the number of bits in the system.

2. Determine Operation:
Establish whether you are performing addition or subtraction.

3. Setup for Operation:
Place a line above the full adders.



there might be carry of 1 after the final operation, this is called overflow

examples

1.add the following digits

a = 1001

b = 0101

Position XOR gates above each full adder on this line.
Set the XOR gate values to 0 if for addition, or 1 if for subtraction.

4. Initial Carry Input:
Draw a line before the first full adder.
Set the value on this line to 0 for addition, or 1 for subtraction.

5. Process First Bit:
For the first bit (a₀) of the first value:

Add it to the value from step 4, keeping track of the sum and carry.

6. XOR Gate Operation:
For the first bit (b₀) of the second value:

Compare it with the corresponding XOR gate:
If the bits are the same, set the XOR gate output to 0.
If the bits are different, set the XOR gate output to 1.

7. Full Adder Operation:
Combine the XOR gate output and the sum from step 5 using the full
adder.
Draw a line to represent the carry, pointing to the next full adder in the
sequence.
Repeat steps 5-7 for each subsequent bit, moving from the least
significant bit (LSB) to the most significant bit (MSB).



2.add the following digits

a = 1001

b = 0101



Compare Circuit / magenitic comparator
a combinational circuit that compares
between 2 binary numbers inputs , and
generates 3 output signals to indicate the
result of the comparison

Types of comparisons

example : design a 4 bit magenitic comparator to compare between 2 2 bit
numbers

1. Greater than
2. Less than
3. Equal



a = a0a1
b = b0b1

a0 a1 b0 b1 G L E

0 0 0 0 0 0 1

0 0 0 1 0 1 0

0 0 1 0 1 0 0

0 0 1 1 0 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 1

0 1 1 0 0 1 0

0 1 1 1 0 1 0

1 0 0 0 1 0 0

1 0 0 1 1 0 0

1 0 1 0 0 0 1

1 0 1 1 0 1 0

1 1 0 0 1 0 0

1 1 0 1 1 0 0

1 1 1 1 0 0 1

we can also make k-maps for every output

G k-map

G b̅ 0b̅ 1 b̅ 0b1 b0b1 b0b̅ 1
a̅ 0a̅ 1 0 0 0 0

a̅ 0a1 1 0 0 0

a0a1 1 1 0 1

a0a̅ 1 1 1 0 0

L k-map

L b̅ 0b̅ 1 b̅ 0b1 b0b1 b0b̅ 1
a̅ 0a̅ 1 0 1 1 1

a̅ 0a1 0 0 1 1



a0a1 0 0 0 0L b̅ 0b̅ 1 b̅ 0b1 b0b1 b0b̅ 1
a0a̅ 1 0 0 1 0

E k-map

E b̅ 0b̅ 1 b̅ 0b1 b0b1 b0b̅ 1
a̅ 0a̅ 1 1 0 0 0

a̅ 0a1 0 1 0 0

a0a1 0 0 1 0

a0a̅ 1 0 0 0 1

We can then simplify the equations and create circuits

drawing of the compare circuit

The RS flip flop (reset/set)
uses the NOR GATE

basic drawing

“Schematic-of-2-bit-comparator-using-logic-gates.png” could not be found.



how it works

S R QT Not QT
0 0 0 1

0 1 0 1

1 0 1 0

1 1 infinity infinity

note: qt depends on the value of S, and there is no way both S and R are 1

Delay Circuit



D QT Not QT

0 0 1

1 1 0

it basically gives the value of D, however (hence the name), it delays the input


