
ملاحظة: المكثف بھدف لتلخیص اھم النقاط لتصمیم و تنظیم الحاسوب, بس ما بظمنلك تجیب العلامة الكاملة, رح تستفید من ھاظ
المكثف لو درست المادة قبل تدرس ھان, و انا مش مسؤول عن اي حد ما جاب العلامة الي بدو ایاھا

Chapters 1+2
Mostly revision, to summarize

Computer architecture: the computer's user-facing structure and behavior, detailing
functional modules like instruction sets, information formats, and addressing modes.

Computer organization: how hardware components are interconnected and how they
function together.

Computer design involves the development of hardware for the computer system following
the formulation of specifications. It encompasses the implementation of the system's
components by the designer.

Design Levels

Truth Tables

AND
A B Out

0 0 0

0 1 0

1 0 0

1 1 1

OR

A B Out

0 0 0

0 1 1

1 0 1

1 1 1

NOT

Architecture (highest)
Logic
Electronic (lowest)

A Out

0 1

1 0

NAND

A B Out

0 0 1

0 1 1

1 0 1

1 1 0

NOR

A B Out

0 0 1

0 1 0

1 0 0

1 1 0

BUF (Buffer)

A Out

0 0

1 1

XOR

A B Out

0 0 0

0 1 1

1 0 1

1 1 0

XNOR

A B Out

0 0 1

0 1 0

1 0 0

A B Out

1 1 1

SOP VS POS
SOP (Sum of Product) (Minterms) example =A’B’C+AB’C’+AB’C+ABC’+ABC

POS (Product of Sum) (Maxterms) example = (A+B+C)(A+B’+C)(A+B’+C’)

Boolean algebra rules

Combinational vs Sequential
Combinational Logic Circuits: Output depends only on the input at the time, with no memory.

Sequential Logic Circuits: Output relies on both the current input and the circuit's current
state, incorporating memory.

tldr : combinational has no memory

Decoder

A binary decoder with n inputs and m=2^n outputs generates all minterms, where only one
output is active at a time when enabled, with the option to use an inverter for active low
enable or NAND gates for active low output.

X + 0 = X
X · 0 = 0
X + 1 = 1
X · 1 = X
X + X = X
X · X = X
X + X' = 1
X · X' = 0
X + Y = Y + X
X · Y = Y · X
X + (Y + Z) = (X + Y) + Z
X · (Y + Z) = X · Y + X · Z
X + Y · Z = (X + Y) · (X + Z)
(X + Y)' = X' · Y'
(X · Y)' = X' + Y'
(X')' = X

example

Encoder

The encoder function takes a single active input number and generates its binary value
output, such that if the input number 3 is active, the output is 011.

example

Multiplexers

Binary encoder requires detection of no active input and resolution of conflicts in case
of multiple active inputs.
Priority is given to higher-numbered inputs when resolving conflicts.
Preprocessing ensures that only the highest active input is set while others are reset.
An "Idle" state is activated when no input is active.
Specific logic is defined for each output bit based on the active inputs and their
complements to handle the "Idle" state.

A multiplexer (MUX) selects one output from multiple inputs based on select lines, typically
built as a many-to-one circuit using decoders and AND gates, with an enable option to
deactivate all outputs.

Decoders and multiplexers can be used in implementing because they implement all the
minterms.

With suitable MUX size, a function can be implemented directly, while with less complex
sizes, one may need logic gate .

Decoders have to be of proper size, and an OR gate is used.

Binary Counter

a circuit where all flip-flops reset together with a master asynchronous clear signal. Changes
only happen on the rising edge of the clock signal (0 to 1). Each flip-flop divides the input
clock frequency by 2, leading to an overall division of the clock frequency by powers of 2 as
it passes through successive flip-flops.

ROM & RAM

Memory consists of cells storing binary bits. Addresses decode rows for read/write
operations. Memory sizes are 2^m locations with n bits (e.g., 4, 8, 16). Memories are either
read-only (ROM) or read-write (RWM). Silicon memories are randomly accessed (RAM),
while magnetic memories are sequential.

Chapters 3
Normalization: writing a number with only 1 non-zero digit before the decimal (scientific
notation)

i.e

0.001 turn to 1 * 10 -3

Popular Radices:

Binary Coded Decimal (BCD):

ASCII:

Radix Systems:

1. Binary: Base 2
2. Octal: Base 8
3. Decimal: Base 10
4. Hexadecimal: Base 16

Groups of 4 bits independently mapped into decimal digits
Six invalid combinations exist

26 Capital letters (A, B, ..., Z)
26 Small letters (a, b, ..., z)
10 numbers (0, 1, ..., 9)
32 controls (XON, XOFF, DEL, ESCAPE, ...)
Remaining are special symbols (, ~, `, ^, ...)

Characterized by their base, such as radix 10 (decimal) and radix 2 (binary).
Each radix system has corresponding complements: 9's and 10's complements for
radix 10, 0's and 1's complements for radix 2.
The size of a number, indicated by the number of digits, holds significance even if the
value represented is small.

Fixed-Point Representation:

Floating-Point Representation:

Single Precision (32-bit) Numbers:

Double Precision (64-bit) Numbers:

Advantages of Double Precision over Single Precision:

Given: 0 1001000 | 1100

Unsigned Numbers: Represent only non-negative integers, ranging from 0 to (2^N -
1), where N is the number of bits.
Signed Numbers: Allow representation of both positive and negative integers.

Signed Magnitude: A sign bit indicates the sign (0 for positive, 1 for negative), and
the remaining bits represent the magnitude.
2’s Complement Signed Numbers: Negative numbers are represented in 2's
complement form.

Overflow and Addition: Signed numbers never overflow if the numbers to be added
have different signs.

The general form is (-1)^S 1.M 2^E.
S: sign bit
M: mantissa
E: exponent

The exponent covers both positive and negative ranges.

1 bit for sign
8 bits for biased exponent
24 bits for mantissa

Similar to single precision but with increased precision.
1 bit for sign
11 bits for biased exponent
54 bits for mantissa

Wider range
Increased accuracy with 54 bits for the mantissa

Steps:

Result:

Given: 110 | 1

Steps:

Result:

Floating-Point Number Conversion Process

1. Mantissa Calculation:
Binary: 1001000
Decimal: 64+8=72

2. Exponent Calculation:
Binary: 1100
Fractional Part: 1/2+1/4= 3/4 = .75

3. Combine Mantissa and Exponent:

 =72.75

72.75

1. Mantissa Calculation:
Binary: 110
Decimal: 4+2=6

2. Exponent Calculation:
Binary: 1000000
Decimal: 1/2
Fractional Part: .5

3. Combine Mantissa and Exponent:

6.5

6.5

1. Convert Number to Binary: Convert the given decimal number into its binary
representation.

2. Normalize the Binary Representation: Identify the leftmost non-zero bit (1 bit) in the
binary representation obtained in step 1. Adjust the decimal point to create a
normalized binary number in scientific notation.

Final representation: "Sign bit, Exponent bits, Mantissa bits".

example= convert (23.75)10 to a floating point

23 = 10111

.75 = .11

(23.75)10 = (10111.11)2 = 1.011111 * 24

E = 127+4= (131)10 = 10000011

M = 011111

S = 0

(23.75)10 = 0 10000011 011111 (plus enough zeros to make it 23)

example= convert (12)10 to a floating point

12 = 1100 = 1,100 23

E = 127+3 = 10000010

M = 100

S = 0

(12)10 =0 10000010 100 00000000000000000000

example= convert (-6.5)10 to a floating point

3. Calculate the Exponent: Compute the exponent required to represent the normalized
binary number in scientific notation. For IEEE 754 single-precision format, add a bias of

127 (28 -1 (to compensate for the s)) to the actual exponent to obtain the biased
exponent.

4. Convert the Exponent to Binary: Represent the biased exponent obtained in step 3 in
binary form. Ensure it is represented using 8 bits.

5. Extract the Mantissa: The mantissa represents the fractional part of the normalized
binary number obtained in step 2. It consists of all the bits after the binary point.

6. Compose the Floating-Point Representation: Assemble the floating-point
representation by arranging the bits in the following order:

Sign bit (0 for positive numbers, 1 for negative numbers)
Exponent bits (obtained in step 4)
Mantissa bits (obtained in step 5)

6 = 110

.5 = 1

110,1 = 1,101 * 2 2

E = 127+2 = 129 = 10000001

M = 101

S = 1

(-6.5) = 1 10000001 101 00000000000000000000

Floating-Point Number to decimal Conversion Process

Sign (S):

Exponent (E):

Mantissa (M):

Normalization Inversion:

Conversion:

example: convert the following to decimal

Check the first bit of the binary representation:
If it is 1, the decimal is negative.
If it is 0, the decimal is positive.

Convert the binary representation to decimal format.
Subtract 127 from the obtained decimal number to determine the exponent.

No adjustments are required; retain the mantissa as it is.

Record the exponent and mantissa obtained.
Reverse the normalization process by undoing the normalization steps.

Convert the inverted normalized values back to decimal representation for the final
result.

1. 1 10000011 1000101

Sign (S): 1 (Negative)

Calculation: 1,1000101×24 =11000,101

Result:
=−24.625

Calculation: 1,101010×22 =110,1010

Result:
=−6,625

Other Binary Codes
Gray Code

Other Numeric Codes

Alphanumeric Codes
Other Alphanumeric Codes

Exponent (E): 10000011 = 131
131−127=4
Significand (M): 1000101

2. 1 10000001 101010

Sign (S): 1 (Negative)
Exponent (E): 10000001 =129
129−127=2
Significand (M): 101010

Each code differs by only one bit from its adjacent code.
Physical adjacency implies logical adjacency.

BCD 8421: Binary-Coded Decimal with weights 8-4-2-1.
2421 Weight: Similar to BCD, but with different weight assignments.
Excess-3: A binary-coded decimal system where each digit is represented by adding 3
to the corresponding binary value.
2-out-of-5 Codes: A numeric encoding scheme using combinations of two out of five
possible elements.

EBCDIC: Extended Binary Coded Decimal Interchange Code, historically used by early
IBM machines.

Error Detection Codes

Parity: Generation & Checking

Chapter 4
Main Components of a PC

Two Types of Logic Circuits in Digital Computers

Register Transfer Languages

Types of Microoperations:

Unicode: A character encoding standard capable of representing symbols from all
languages, available in 16-bit and 32-bit formats.

Parity Bit: Adding a parity bit to each string doubles the space required.
Only half of the space is valid, making it possible to detect an intentional change.

Data transmitted over a link or stored is prone to errors.
Extra bits act as guards, providing invalid combinations allowing error detection.
The simplest error detection method is parity. A single bit (0 or 1) is added to the data to
ensure the total number of 1s in the string is odd or even.
Upon receiving the data or retrieving it from storage, a similar circuit checks whether
the guard bit is consistent.

1. CPU
2. Main memory
3. Input/output devices

1. Combinational Logic Circuits
2. Sequential Logic Circuits

1. Register Transfer
2. Bus Transfer

Internal Bus (inside CPU)
External Bus (from CPU to other devices)

3. Memory Transfer

1. Arithmetic microoperations

Registers in a PC:
Registers are fundamental components in a PC used across all units. They primarily store
data and perform logical and arithmetic operations. Registers can be divided into two types:

Memory Types:

All memories serve specific purposes and are made up of cells, with each cell containing
registers that store a single bit (0 or 1). Memories typically have an n-bit (input) and an m-bit
(output), with n addresses, and two main inputs: the read gate (to load data from memory to
the outside environment) and the write gate (to store data to memory).

Size of Memory:
The size of memory is determined by the number of registers it contains (r = memory). All
memories have an address, and the address line determines where read and write
operations occur (k = number of memory lines) (r = 2^k). Memories also have a specific
number of inputs and outputs.

Microoperations:

Microoperations: elementary operations performed during one clock pulse on the information
stored in one or more registers.

Processor Datapath: the arena where data undergoes processing, it encompasses registers,
buses, and the arithmetic and logic unit (ALU).

General: Ri ← F (Rj, Rk) , where F is some function like shift, add, ...

Register Transfer Language (RTL):
RTL : symbolic notation used to describe the microoperation transfers among registers and
memory locations

2. Logic microoperations
3. Shift microoperations

1. Memory Register: Stores binary data, akin to memory.
2. Operational Register: Executes logical and arithmetic operations, similar to Arithmetic

Logic Units.

1. Main Memory: Faster and at a higher level than normal registers, used to store
programs and data accessible to the processor. Organized with addresses to locate
specific data.

2. ROM: Stores instructions.

The internal organization of a computer includes registers with specific functions, a set of
microoperations determined by its design, and control signals governing their execution.

RTL Elements:

Example: Operation ADD R1, R2

Register Block Diagram
Designation of a Register:

Register Transfer

Representation of a transfer
R2 ← R1

1. Set of registers and their functions
2. Set of microoperations and possible microoperations provided by the organization of

the PC
3. Control signals that initiate the sequence of microoperations

Registers R1 and R2 act as data registers, holding numbers
ADD instruction adding two registers
Control signals:

Copies R1 to BUS A and R2 to BUS B of the ALU
Commands the ALU to perform addition
Moves the output of ALU back to R1

1. A register
2. A portion of a register
3. A bit of a register

A simultaneous copy of all bits of the source to the destination register, during one clock
pulse

Representation of a controlled (Conditional) transfer

P: R2 ← R1

A binary condition (P=1) which determines when the transfer is to occur If (P=1) then (R2 ←
R1)

Implementation of the statement P: R2 ← R1

Basic Symbols for RTL

Capital Alpha Numerals

Parenthesis ()

Arrow ←

Colon :

1. Block Diagram
2. Timing Diagram

Description: Denotes registers like MAR and R2

Description: Denotes part of registers like R1(3:0)

Description: Denotes transfer of information

Description: Terminates control function like P:

Comma ,

Bus Based Transfer
Bus: a shared media path (a group of wires) over which information is transferred, from any
of several sources to any of several destinations

Bus is a shared media, used instead of the costly but high performance 1-to-1 connection of
registers and memory

This is cheaper and less space consuming but less in performance, as only two parties can
be involved at one time

Method Price Performance

Bus Cheaper Less Performance (two parties can be
involved at one time)

Register memory
connection

More
Expensive

Higher Performance

bus to register and register to bus example:

Bus Register Transfer

All registers monitor the BUS. Select lines indicate which register can access data. LD (load
enabling signal) lets one register retrieve data, clocking in on the rising edge of the clock
signal.

Description: Separates parallel microoperations like A ← B, C ← A

Register to Bus Transfer

Mux

Tri State

Tri-state buffers can be used in register to bus interface

Actually connected and disconnected correspond to very low (10’s Ω) and very high
impedance (10’s M Ω)

Register to bus has the form BUS
Ri based on Select Lines
Select Lines 00 causes all bits of REG A to be switched to BUS ← Using MUX is just
one way to do this

If C=1 Then Y is connected to A
If C=0 Then Y is disconnected from A

Memory Transfer
Memory operations hinge on the Address Register (AR) for specifying memory read or write
locations. Control inputs like Read (RD) and Write (WE) dictate data flow.

The Data Register (DR) stores read or to-be-written memory data.

In systems with multiple memory modules, the Chip Select (CS) control input selects a
specific module.

Memory read microoperation
DR ← M[AR]

Memory write microoperation
M[AR] ←DR

Register Transfer Microoperations examples

Microoperations types

1. Copy content of reg Rj into reg Ri
Ri ← Rj

2. Copy the address portion of reg. DR into reg. AR
AR ← DR

3. Copy a binary constant (C) into reg. Ri
Ri ← C

4. Copy content of Ri into bus A and, at the same time copy content of bus A into Rj
(equivalent to Rj ← Ri)
ABUS ←Ri, Rj ←ABUS

5. Memory Read
DR ←M[AR]

6. Memory Write
M[AR] ←DR

1. Arithmetic microoperations:
Add
Subtract

Arithmetic Microoperations examples

4-bit Adder Using set of Full Adders (FA)
also known as ripple carry adder

Time to deliver the sum is proportional to the size

If we invert the B's, yielding the 1's complement of the number, we obtain the difference
reduced by 1.

If we subsequently add 1, we achieve the difference itself.

Increment
decrement
Negate (2’s complement)

2. Logic microoperations:
AND
OR
NOT (Complement)

3. Shift microoperations:
Shift: Left & Right, Logical and Arithmetic
Rotate or Circulate

4. Register transfer microoperations:
Pass content through

1. Contents of Ri plus Rj copied to Rk
Rk ←Ri + R

2. Contents of Ri minus Rj copied to Rk
Rk ← Ri - Rj or Rk ← Ri + Rj’+ 1

3. Complement the contents of Ri
Ri ← Ri’

4. 2's complement the contents of Ri (negate)
Ri ←Ri’+ 1

5. Increment the content of Ri by 1
Ri ←Ri + 1

6. Increment the content of Ri by 1
Ri ←Ri - 1

Incrementer Using set of Half Adders (HA)
When adding 1 to a 4-bit number, we only need the first bit's carry. Thus, a Half Adder (HA)
is enough. Processors use logic that adds or subtracts 1 to increment or decrement
numbers, not carrying through each stage.

4-bit Adder/Subtractor Using set of Full Adders
There are two cases 1. If M=0 then C0=0 and the XOR passes the B’s as are, i.e. ADD 2. If
M=1 then C0=1 and the XOR complement the B’s, i.e. SUBTRACT

Logic Microoperations
Binary operations on strings of bits in registers, Useful for bit manipulations on binary data

Useful for making logical decisions based on the bit value

examples:

Examples: A 1 0 1 1 0 0 1 0
B 0 1 0 1 0 0 1 1
A’ 0 1 0 1 1 1 0 1
A ∨ B 1 1 1 1 0 0 1 1
A ∧ B 0 0 0 1 0 0 1 0
A ⊕ B 1 1 1 0 0 0 0 1

1. AND (∧): Masks out specific groups
2. OR (|): Merges binary or character data
3. NOT (¬) Inverts data or mask

1. Selective-set (A ∨ B): Sets specific bits to 1 based on conditions.
2. Selective-clear (A ∧ B): Clears specific bits to 0 based on conditions.
3. Selective-complement (A ⊕ B): Toggles specific bits based on conditions.

Shift Microoperations
Logical Shift:

Arithmetic Shift:

Circular Shift: like regular shift, but instead of dropping the bit at one end, it's inserted into
the other end.

Left Shift is equivalent to multiplying by 2
Right Shift equivalent to dividing by 2

Examples:

Zero is shifted in at one end, and a bit is dropped from the other end.

Similar to logical shift, but the sign bit is copied instead of inserting zero (Right), and
changing the sign bit sets the Overflow flag (Left).

Shift Right inserts 0 in the leftmost bit through SRin=0 and drops the content of the leftmost
bit.

Shift Left inserts 0 in the rightmost bit through SLin=0 and drops the content of the rightmost
bit.

Typically, dropped bits get copied to a flag for testing.

Circulate: Instead of inserting at one end and dropping from the other, the end bits are
connected to close the circle. Circulation typically copies the dropped bits onto some flag for
testing.

Arithmetic Logic Shift Unit (ALSU)
The 1-bit ALSU manages arithmetic, logic, and shift operations on bit I of strings A and B.
For shifting the ith bit of string A, adjacent bits are involved.

S1 and S0 determine operations within AU and LU.

S3 and S2 choose the output of AU, LU, or one of the other two inputs that map bits of input
string A, shifting left or right.

Chapter 5
Instruction:
an arithmetic or logical operation, consists of operation of code and addressing operant

Basic unit of computing, usually divided into operation code, operand, address, addressing
mode, etc.

Program:
A set of instructions that specify the operations, operands, and the sequence by which
processing has to occur.

Instruction Code:
Group of bits that tell the computer to perform a specific operation (a sequence of micro-
operations)

Addressing Modes (operation field): found in the instruction format, selects the type of
operation that must be done on the operands in the register

Basic Addressing Modes:

data stored in the register or memory is decided based on the addressing mode type

addressing modes sets Regulations on how to use the address field before the fetching the
operands process

we have different addressing modes for

we decide the addressing mode based on operation of code

instruction format generally is made from code and data formats, made from 3 fields

A processor with:

1. Immediate
2. Register
3. Memory Direct
4. Memory Indirect

1. programming variety for the user (to let him have a chance to use pointers, counter for
loop control, and indexing of data, and changing it's place on the memory)

2. reducing the addressing field's number of bits in the instruction (with different modes,
gives the programmer (especially the expert in assembly) the flexibility to write a code
suitable from the number of instruction and run time)

1. operation of code (operation field): selects the operation to be done
2. mode field: selects the way we get the required operant or the address
3. address field: selects the address of the memory location or the register

1. Register to be used as default operand, Accumulator
2. Memory to hold code and data

Instruction code with two parts

The address has 12 bits, while the opcode has 4

if have 4 bits opcode means we have 16 probability

2 4 operation + 212 word = 4096 word

addressing modes express where the operands is and how to handle that part, and has
different types

immediate addressing mode: operand is a part of the instruction (the instruction contains the
operand field instead of the address field)

direct addressing mode: used to select the factors address in the memory

indirect addressing mode: the value inside the instruction is an address to the factor's
address

Effective Address (EA) is the address used to access:

Example

to perform some instructions, we need 2 operands (source and destination)

source: location which the cpu reads the data from
Destination: the place where the cpu stores data

there are many types of operands:

the main job of a processor is to perform instructions from the main memory

the instruction type must be capable of performing 4 types of operations

1. An operation code that tells the processor what to do
2. An address part that tells the processor where the data is located, to operate on it along

with the register content

An operand for a computation-type instruction, or
A target address for a branch-type instruction

Direct: Address 457 points to the operand (126). EA=457 (last digit is 0)
Indirect: Address 457 points to an address to the operand, it points to 1350, which is
the address to the operand (438). EA = M[457] (last digit is 1)

in the instruction itself
as a type of inner register
in the memory or an I/O Gate

in the immediate addressing mode how does the computer differentiate between the
different modes:
the last part of the operation

BC Components

BC Instruction Formats

1. Non-memory-Reference Instructions; Opcode = 111 � - I = 0 means Register-Reference
Instruction - I = 1 means Input-Output Instruction

Opcodes 000 ~ 110 stand for And, Add, Load etc

Instruction Set Completeness

1. data transfer (movement between memory and data processor (read and write))
2. arithmetic and logic operations (addition and subtraction compare etc.)
3. program sequencing and flow control (branch instructions)
4. input output transfer (to transfer data to and from the real world)

1. Memory
2. Input/Output
3. Processor

1. Datapath (include)
1. ALU
2. Registers (types)

1. General purpose like AC and TR
2. Special purpose like the others

3. � BUS

4. Control (includes)
1. Clock signal to synchronize the data transfers of all the registers
2. Bus control signals S2 S1 S0
3. INC, CLR and LD of all registers
4. Memory RD and WE signals

2. Memory-Reference Instructions: Opcode != 111
I = 0 means direct addressing
I = 1 means indirect addressing

Instruction set must provide for constructing programs to evaluate any computable function

Instruction Types:

Missing Instructions

CMA is register-ref

AND is memory-ref (because it requires a second operand, which is always in memory)

Missing instructions:

Example: DEC operation on a memory location content, x = (105)10

LDA: AC = (01101001)2
CMA: AC = (10010110)2
INC: AC = (10010111)2
CMA: AC = (01101000)2 , AC = (104)10

Instruction Cycle
Each instruction in the basic computer has 3 or 4 phases:

1. Functional Instructions; Arithmetic, Logic, and Shift instructions (like)
ADD, CMA, INC, CIR, CIL, AND & CLA

2. Transfer Instructions; Register-memory data transfers (like)
LDA & STA

3. Control Instructions; Program sequencing and control (like)
BUN, BSA & ISZ

4. Input/Output Instructions; Input and output (like)
INP and OUT

1. OR: DeMorgan's NOT & AND
2. SUB: CMP & ADD with E=1
3. MUL: ADD repeatedly
4. DIV: SUB repeatedly
5. DEC: CMA, INC & CMA
6. SHR: CIR with E=0
7. SHL: CIL with E=0
8. STE: CLE & CME

1. Instruction Fetch Phase; consumes 2 clock cycles (T0 and T1)

Instruction Fetch & Decode
1. Instruction Fetch Phase T0 : AR <-- PC (S2S1S0=010, AR_LD=1) T1 : IR <-- M [AR], PC
<-- PC + 1 (S2S1S0=111, IR_LD=1, PC_INC=1)

Simply
- T0 causes MUX S’s to select PC and AR to LD

- T1 causes MUX S’s to select MEM, IR to LD and PC to INC

So:
S1 is set if T0 or T1

S0 is set if only T1

Operand Fetch & Execute Paths
Based on the instruction type, one of four paths will be selected in T3

2. Instruction Decode Phase; consumes 1 clock cycle (T2)

3. Data Fetch Phase; consumes either 0 or 1 cycle
REG & I/O Instructions has no Data Fetch, so 0 cycles
MEM Instructions has Data Fetch, and consumes 1 Cycle (T3)

4. Instruction Execute Phase; consumes 1, 2 or 3 cycles
REG & I/O start execution in T3 and completes at the end of T3
MEM instructions fetches data in T3 , and starts execution in T4 ; then

Some finish in T4 , like STA
Some finish in T5 , like AND
Some finish in T6 , like ISZ

2. Instruction Decode Phase
1. T2 : D0 , . . . , D7 <-- Decode IR(14-12), AR <-- IR(11-0), I <-- IR(15)

3. [Operand Fetch &] Execute Phase
T3 , T4 , T5 and T6

4. Two types of instructions
1. REG & I/O: No data fetch, execute in T3 and finish
2. MEM execute: Data fetch in T3 , execute in T4 , T4 & T5 , or T4 , T5 and T6

1. Register instructions
Identified when D7^I’ (’ means not)^T3=1

Register Reference Instructions

Identified when D7=1 & I=0, operation specified in IR(11-0)
Execution starts with timing signal T3
Let r =D7^I’^T3 and Bi = IR(i) , i = 11, 10, 9, …, 0

Memory Reference Instructions

Start execution at T3

2. I/O instructions
Identified when D7^I^T3=1

Start execution at T3

3. I/O instructions
Identified when D’7^I’^T3=1

Do NOTHING in T3 start execution in T4

4. Memory indirect
Identified when D’7^I^T3=1

AR <-- M[AR] in T3 and start execution in T4

register and input-output instructions execute in T3

memory instructions fetch data in T3 and start execution in T4

Effective Address in AR if T2^I’ or T3^I

So, by end of T3 AR points to the operand in memory

Memory assumed fast enough to complete reading or writing in 1 cycle
Memory reference instructions start with T4

Branch After Saving Address (BSA)
Call subroutine at address 135 while executing at address 20
Return address, which is 21 is saved to location 135
Transfer execution to the next location, i.e. 136
At the end, an indirect unconditional branch is to the beginning, which is 135, i.e. to
where it finds the return address, which is 21

Input/Output and Interrupt
Line Styles
1. Thick are Parallel
2. Thin are Serial
3. Dashed are control

Line Color
- Blue from BUS
- Red to ALU

FGI and FGO modified by both the control unit and the external devices

Input-Output Configuration

I/O Reference Instructions

The keyboard sends and receives serial information
The serial information from the keyboard is shifted into INPR
The serial information for the printer is stored in the OUTR
INPR and OUTR communicate with the computer in parallel and with the outside
serially
The flags are needed to synchronize the timing difference between I/O device and the
computer
INPR Input register - 8 bits
OUTR Output register - 8 bits
FGI Input flag - 1 bit
FGO Output flag - 1 bit
IEN Interrupt enable - 1 bit

I/O Instructions identified when D7=1 and I=1

I/O Instruction is specified in B11 ~ B6 of IR

Execution starts with timing signal T3

I/O instructions include flags control and interrupt control
p = D7^I^3 and Bi = IR(i) , i = 11, 10, 9, …, 6

CPU and I/O Device Interactions

Program-Controlled Input/Output

Can get input only if FGI=1 and can send output only if FGO=1
This explains the initial condition of FGI and FGO

- CPU continuously involved - CPU slowed down to I/O speed, wasting much of its time -
Simple and little hardware

Interrupt-Initiated Input/Output

Interrupt Cycle & Instruction Cycle
The computer has two cycles:

If interrupt is enabled (IEN=1) and at least one of the flags is set (FGO=1 or FGI=1), then:
1. Current PC is saved to memory location 0

Open communication only when some data has to be passed, through interrupt.
The I/O interface, instead of the CPU, monitors the I/O device
When the interface finds that the I/O device is ready for data transfer, it generates an
interrupt request to the CPU
Upon detecting an interrupt, the CPU stops momentarily the task it is doing, branches
to the service routine to process the data transfer, and then returns
IEN is an interrupt-enable flip-flop that can be set and cleared by instructions

1. Instruction cycle; the normal instruction execution behavior
2. Interrupt cycle, deviation from the normal coarse of action

The interrupt cycle is a hardware implementation of a branch and save return address
operation

2. Control is transferred to location 1 (where a branch instruction to the interrupt service
routine is stored)
3. At the end of the interrupt service routine, an Indirect unconditional branch to location 0 is
executed, to take us back to the takeoff point

The interrupt cycle :
- R^T0: AR<-- 0, TR <-- PC
- R^T1: M[AR]<-- 0, PC <-- 0

- R^T2: PC <-- PC+1, IEN<-- 0, R<-- 0,SC<-- 0

Design of Basic Computer (BC)

Register Control

Register Transfer Statements for Interrupt Cycle:
IEN ^ (FGI+FGO)(T’0^T’ 1^T’ 2): R ^ 1

Necessary to update R only after decoding, to avoid executing microoperations from
both sides (instruction and interrupt cycle)
The fetch and decode phases of the instruction cycle must be modified
The T0 , T1 and T2 conditions must be ANDed with R, to become R’T0 , R’T1 and R’T2

We can only INC, LD or CLR the PC, we CLR then INC to perform PC <-- 1

Hardware Components of BC
1. A memory unit: 4096 x 16
2. Registers: AR, PC, DR, AC, IR, TR, OUTR, INPR, and SC
3. Flip-Flops (Status): I, S, E, R, IEN, FGI, and FGO
4. Decoders a 3x8 Opcode decoder and a 3x8 timing decoder
5. Common bus: 16 bits
6. Adder/Logic Unit

Control Logic Gates
1. Registers Controls
2. Read and Write Controls of Memory
3. Set, Clear, or Complement Controls of the flip-flops
4. S2 , S1 , S0 Controls to select a register for the bus
5. Adder/Logic Unit Controls

To find the controls of AR, scan all of the register transfer statements that change the
content of AR.

Flag Control and Flag Control Logic
To find the controls of Interrupt Flip-Flop, IEN, scan all of the register transfer statements
that change the content of IEN. In terms of p = D7^I^T3 , they are

p^B7 : IEN <-- 1 (from I/O Instruction)

p^B6 : IEN <-- 0 (from I/O Instruction)

R^T2 : IEN <-- 0 (from Interruption)

Bus Controls

Scan the statements that cause the bus to be loaded by registers or memory

Below is a list of them
1. R’^T0 : AR <-- PC / LD AR

2. R’^T2 : AR <-- IR(11-0) / LD AR

3. D’ 7^ I ^3 : AR <-- M[AR] / LD AR

4. R^T0 : AR <-- 0 / CLR AR

5. D5^T4 : AR <-- AR + 1 / INC AR

In terms of each input, they are:
1. AR_LD = R’^T0 + R’^T2 + D’ 7^I^T3

2. AR_CLR = R^T0

3. AR_INC = D5^ T4

Controls of the rest (registers, memory, status and other flip flops) follow the same rule
To see how easy, the LD of TR is simply the condition R ^ T0

J = p^B7

K = p^B6 + R^T2

AR as an example has the following effect on the bus
D4^T4 : PC <-- AR

D5^T5 : PC <-- AR

شرح حبوش
الدكتور شرح محاضرة كملخص لشباتر 5, برضو حكا ركزو عالشابتر

Types of Languages

Addressing Modes
A side of group of instructions, instructions in most CPUs, and decides which instruction type
to use and has been used in the building of certain instruction modes, and how to define
instructions for the machine language, and these modes focus on the use of programmers
who use assembly language.

x1 = D4^T4 + D5^T5

1. Machine Language
2. Assembly Language
3. High Level Language
4. Application Language

addressing modes are an aspect of the instruction set architecture in most CPU designs,
The various addressing modes that are defined in a given instruction set architecture, define
how the machine language instructions in that architecture identifies the operants of each
instruction.

direct vs immediate

6 bits to 8 registers -> we use 24 bit registers

addressing mode: is used to find out where are and how to handle the operants

addressing mode types
1. immediate
Found in the 2 instruction of the operant

2. Direct

Clarifies the 2nd part of the instruction and determines the operant's memory address (we
do the operation on the address and not the data found in the operant)

3. Indirect
if we have indirect addressing, it means that the value found is an address for the operand's
address, and so it is the 2nd part of the instruction and determines or contains the address
of the operand's address

16/15 15/11 11/0

0/1 Opcode Address

0 for direct/ 1 for indirect

direct addressing mode: goes to the address no problem

Indirect addressing mode: takes the value, and goes to the address, which has an address,
which has an operand (like a pointer to the data)

these modes are important in the creation of any delicate machine

from this we have addressing modes that clarifies that the 2nd part from the instruction and
how to handle and if the operand is direct or the address of the operand or the address of
the cells the operand address requires like indirect

Question: the instruction format is made using 16 bits (0-11 for address/ 11-15 for opcode/
15-16 for Addressing), how can the device figure out the addressing mode.

answer: the 1 bit decides the address

the direct addressing mode gives the operand while the indirect gives the address which is
made from 11 bits that contains the program counter (registration address) that contains the
instruction address that will be performed and so it contains a 12 bit address, the instructions
are contained in the memory

in this case the register size is the same size as the memory (based on the number of
busses)

the address register is linked to the memory and it's made from 12 bits and contains the
memory address (contains the address that will be sent to the memory and communicates
directly with the memory)

Data Register: made from 16 and it's purpose is to contain the operand that comes from the
memory and we do operations on.

accumulator: made from 16 bits, and any operation that happens in the alu is stored in the
ac

Instruction Register: 16 bits and contains the instructions currently done

Temporary Register: 16 bits, is needed for some operations that need a temp register

I/O Register: made from 8 bits that contain input output bits

Common bus: device linked by a common carrier between devices so Information and data
is transferred

Computer Instruction Format
1. Memory Reference Instruction

instructions that deal with addressing memory directly or indirectly, starts with 0111
(why)
we use 7 bits because the 111 is occupied by something else (I/O situations)

2. Register Reference Instruction
from 000 to 110
is a bunch of instructions to deal with registers and is made from a bunch of
formats in the following shape

15-14 14-11 11-0

0 111 Register Operand

how can we Coordinate between instruction formats:

using the designer

Execution Unit: circuit that controls the computer components, has inputs and outputs

Instruction Cycle
Fetching: Getting instructions from memory

Decode: The Process of reading the effective address from the instruction if it has an indirect
address

Execute: Implementation of the instruction

The Program

A group of instructions found in the memory

How is a program executed

we get the instruction from the memory, and the program counter is what gets it using it's
address

Chapter 6
ملاحظة: بس الي شرحو الدكتور من اخر فیدیو

3. Input/Output Instructions
is occupied by the memory format

we can do some operations to the control unit to execute using 2 ways
1. hard wired implemntation
2. micro programmed operation

1. the instruction is transferred to the instruction register
2. the instruction is then analyzed
3. we then go to the processing cycle and move on to the next instruction

Machine Language and Assembly Language

Program: a set of instructions that the data processing task requires to be done

Hierarchy of Programming Languages

1. Machine Language
binary code, we also have octal and decimal and hexadecimal

2. Assembly Language

considered a middle ground between machine lang and high level languages

we can change high level language into assembly using either a assembler or a compiler

the program wrote in this language needs less space, and less execution time

assembly program are specially used in locations that need a quick response time/ like
controls in operating systems

knowledge in assembly language gives you a deeper definition in computer architecture and
how a computer works, which can't be given by a high level language

we can use special programs like interrupt from the Input or Output systems on the
processor units

so when writing in this language we need to have a good knowledge in instruction sets and
rules and hardware that the program will be performed on, otherwise nothing will work

the numbering system used in assembly is a lot

how can we use the binary system with assembly

binary is the system used in computers generally, and the programmer must represent the
numbers in 8 bits/16/32 ...etc., and we put the numbers as signed or unsigned

example: al,5

or al = 00000110

or move ax,5

these are generally instructions that is used to move and put values in a specific place, when
we say move al (a register from 8 bits) and ax (register from 16 bit)

assembly language syntax (line of code)

all commercial computers in stores, designers occupy the assembly language of their choice
and spend it on a catalogue that explain what these instructions mean

we must know that ways of writing are split into lines in assembly language, and are written
in 3 columns (fields)

1. label field

May be empty or may specify a symbolic address consists of up to 3 characters

Terminated by a comma

might have a title or a Symbol or 3 chars

2. Instruction Field
Specifies a machine or a pseudo instruction

3. Comment Fields

Optional comment for program readability

Examples

ORG N /Hex number N is memory location for the next instruction or data

END / Denotes the end of symbolic program

DEC N & HEX N / Signed decimal number N or hexadecimal number N to be converted to
the binary

Assemblers
programs that produce code in one language (object code) from a code written in a another
language (source code)

May specify one of the following:

1. Memory reference instruction, with two or three symbols separated by spaces
(example)

ADD OPR (direct address MRI)
ADD PTR I (indirect address MRI)

2. Register or Input-Output reference or input-output instruction, having no address part
3. Pseudo instruction with/without an operand (for the assembler), like labels

i.e: high-level language programs to machine-level language

Assembly language is a symbolic language with directives

Assemblers: Special case of compilers, where the source code is a program written in
assembly language

Assemblers have 2 passes:

1st Pass: generates a table that correlates all user defined (address) symbols with their
binary equivalent values

2nd Pass: performs binary translation of instructions and data, using fixed tables and tables

built in the 1st pass (Pseudo-Instruction Table, MRI Table, Non-MRI Table and Address
Symbol Table

Some Symbols in assembly language
instructions

registers or general registers are very important in doing mathematical operations, and
registers in the cpu for example: display in calculator

we can use a register here for general use like ax to add 3+2
it would like this

mov ax,3

add ax,2

general purpose register

does not have special architecture

we have low (0-7) register and high (8-12) registers and then 14-15-16, we can use any of
them for sign

segment register
a bunch of segment register (stack segment, code segment, data segment, extra segment,
pointer segment)

index register

flax registers

Programming Arithmetic & Logic Operations
Implementation of Arithmetic and Logic Operations
Hardware: Operation implemented as one machine instruction
Software: Operation implemented as a program using many instructions

Hardware implementation is better (reasons):

Subroutines
Set of instructions that can be used in a program many times

Need linking; a way to call and return to the calling point

Subroutine is performed many times until we get to something called branching

Data is passed from the calling program to the subroutine and back from the subroutine to
the calling program in two ways

Character Manipulation
This code reads two characters from the input port, one at a time Also, packs the two

characters in the 16-bit accumulator, with the 1st character in the higher order byte, and the

2nd in the lower order byte

Interrupt Service
provide efficient way of handling slow devices

Tasks of Interrupt Service Routine

1. Runs faster
2. Consume less space in memory

1. By value, through registers
2. By reference, through a pointer to memory locations

registers that take 16 bits

Save the State of CPU: Contents of processor registers and flags (PC and Flags are
must)
Identify the source of Interrupt: Check which flag is set
Serve the device whose flag is set: Execute Input or Output Subroutine
Restore the State of the CPU: Restore contents of processor registers and flags and
Turn the interrupt facility on
Return to the running program: Load PC of the interrupted program

1. ax
2. bx
3. cx
4. dx

