مالحظة: المكثف بهدف لتلخيص اهم النقاط للرياضيات المتقطعة, بس ما بظمنلك تجيب العالمة الكاملة, رح تستفيد من هاظ المكثف لو درست المادة قبل تدرس هان, و انا مش مسؤول عن اي حد ما جاب العالمة الي بدو اياها

Chapter 1: Logic

Propositional Logic (Calculus): It deals with propositions (statements that are either true or false (but not both)).

Propositions are denoted by letters, often P and Q. True values are represented by T, and false values by F.

Propositions can be:

- 1. Atomic: Single proposition.
- 2. Compound: Multiple propositions linked by logical operators.

Truth Table

A truth table is a tool that lists all possible truth values of a logical statement, showcasing the effects of each logical operator and revealing the resulting truth value of the statement.

Logical Operators:

(will use q,p,r and as examples, but any letter works) **1.Negation:** Read as NOT P, and written as \$\neg\$ p, reverses the truth value of P

2.Conjunction: Read as Q and P, and written as Q∧P, is true if p and q are both true

3.Disjunction: read as P OR Q, written as P \vee Q, is only false if p and q are both false

4.Exclusive OR: read as P XOR Q, written as P ⊕ Q, is true if either P or Q are True, but not both

5.Implication: read as P implies Q, written as P→Q, is only false of P is true and Q is false,

6.Biconditional: read as P if and only if Q, written as $P \iff Q$. is only true if P and Q are the same value.

Exercise: Solve (P ^ Q) v ~R

Components of Implication (P → Q):

1. **Converse:**

- Original Statement: If it is raining, then it is cloudy. $(P \rightarrow Q)$
- Converse (Not the same): If it is cloudy, then it is raining. $(Q \rightarrow P)$

2. **Inverse:**

- Original Statement: If it is raining, then it is cloudy. $(P \rightarrow Q)$
- Inverse (Not the same): If it is not raining, then it is not cloudy. ($\neg P \rightarrow \neg Q$)

3. **Contrapositive:**

- Original Statement: If it is raining, then it is cloudy. $(P \rightarrow Q)$
- Contrapositive (Same): If it is not cloudy, then it is not raining. $(\neg Q \rightarrow \neg P)$

Logical Operator Precedence:

- 1. **Negation (¬)** Highest precedence.
- 2. **Conjunction (AND,** ∧**)**
- 3. **Disjunction (OR,** ∨**)**
- 4. **Conditional (→)**
- 5. **Biconditional (↔)** Lowest precedence.

If the operators are the same, priority goes from left to right.

Exercise: Assume P: T Q: F R:F, Find the value of: P∨(Q∧¬R)⇔P P∨(Q∧¬R)⟺P

T∨(F∧¬F)⇔T

T∨(F∧T)⇔T

T∨F⟺T

 $T \Leftrightarrow T$ T

Applications of Propositional Logic:

1. Translating logic expressions to English:

Examples:

I am hungry (p) if and only if (\leftrightarrow) I will eat (q) P \leftrightarrow Q

If (\rightarrow) it is snowing (p), then I will wear a coat (q) P \rightarrow Q

The store is not closed ¬P

2. Bit-wise operations

Binary system: Utilizes bits, each with two values (0 or 1), representing true (1) or false (0).

Boolean variables: variables that can only hold true or false values.

- Bit string: it is a sequence of zero or more bits.
- String Length: number of bits in the Bit string

e.i: 101010011 is a bit string with length = 9

Logical Equivalence

Tautology: compound proposition that is always true (Ex: P \$\lor\$\$\neg\$P)

Contradiction: compound proposition that is always false (Ex: P $\land\neg P$)

Contingency: compound proposition that is either true or false (Ex: $P \rightarrow Q$)

Exercise: show that $\neg (P \lor Q) = (\neg P \land \neg Q)$ using truth table

Equivalence rules:

Implications Logical Rules

note: there are others, these 2 are the most important ones

Bicondintional Rules

note: there are others, this 1 is the most important ones

Example 1: Show that the following is a tautology.

- $\neg (P \land Q) \rightarrow (P \lor Q)$
- $\neg (P \land Q) = (\neg P \lor -Q)$

$$
(\neg\mathrel{\mathsf{P}}\vee\neg\mathrel{\mathsf{Q}})\rightarrow (\mathrel{\mathsf{P}}\vee\mathrel{\mathsf{Q}}) = (\neg\mathrel{\mathsf{P}}\vee\mathrel{\mathsf{P}})\vee(\neg\mathrel{\mathsf{Q}}\vee\mathrel{\mathsf{Q}})\,(
$$

 $T \vee T = T$

Example 2: Show that the following is logically equivalent.

 $\neg (P \lor (\neg P \land Q) = (\neg P \land \neg Q)$ (¬P ∧ ¬(¬P ∧ Q) (¬P ∧ (¬¬P ∨ ¬Q) $(\neg P \land P) \lor (\neg P \land \neg Q)$ $F \vee (\neg P \wedge \neg Q)$ $(\neg P \land \neg Q)$

PREDICATES AND QUANTIFIERS

predicates: statements that are not propositions

examples:

Ex2: $Q(x, y)$: $x = y + 3$

Ex3: $R(X, Y, Z)$: $X + Y = Z$.

QUANTIFIERS:

1. Universal quantifier (Ɐ), for all

* P(x) is true for all values of x in the universe of discourse (domain). \rightarrow $\forall x$ p(x) \star $\forall x$ p(x) is read as: "for all $x p(x)$ ", " for every $x p(x)$ "

examples:

What is the truth value $\forall x p(x)$, where $p(x)$ is $(x < 10)$. The domain is all positive integers not exceeding 4?

Sol : $\forall x \ p(x) = P(1)$ ^ p(2) ^ p(3) ^ p(4) T ^ T ^ T ^ F = F

2. Translate the following statement into English language: $\forall x Q(x)$, where $Q(x)$ is "x has two parents" and the domain is all people. Sol: every person has two parents

2. Existential Quantifier (Ǝ), for some

* P(x) is true if an element (x) is true). $\rightarrow \exists p(x)$ * $\exists p(x)$) is read as: "there is a x such that $p(x)$ ", " there is at least one x such that $p(x)$ "

Example:

what is the truth value of $\exists x \ p(x)$, where $p(x)$ is " $x * x > 10$ " and the domain is all positive integers

not exceeding 4?

 $\exists x \, p(x) = P(1) \vee p(2) \vee p(3) \vee p(4) =$ True, since $p(4)$ is True

Binding Variable

A variable in a predicate might be:

- 1. Free: p(x): x has a cat
- 2. Bound to either
	- 1. to a value: p(Ali): Ali has a cat. (x is bound to ali)
	- 2. To a quantifier: $\forall x \exists y$ like(x, y), x and y are bound to $\forall \exists$ respectively

Negation

to negate we first change the Quantifier, then negate the inside statement example:

There is a student in the class who has taken Calculus. $\exists x p(x)$

becomes: Every student in the class has not taken calculus. $\neg \exists x P(x) = \forall x \neg P(x)$

NESTED QUANTIFIER

tldr: more than one expression

example

 $\forall x(\forall y (x + y = y + x))$ is true, for every values x and y $x + y = y + x$ Domain: Real Numbers. Note: $\forall x (\forall y (x + y = y + x))$ is the same as $\forall x \forall y x + y = y + x$ (parentheses are optional)

to negate a nested quantifier we negate each quantifier then move to the other one, negating it as well

example: ¬∀x∀y ∃z (P(x,y) ∧Q(y,z)) → ∃x¬∀y ∃z (P(x,y) ∧Q(y,z)) → ∃x ∃y ¬∃z (P(x,y) ∧ $Q(y,z) \rightarrow \exists x \exists y \forall z \neg (P(x,y) \land Q(y,z)) \rightarrow \exists x \exists y \forall z (\neg P(x,y) \lor \neg Q(y,z))$

Chapter 2

Sets

An unordered collection of objects.

The objects in a set are called the elements, or members, of the set. A set is said to contain its elements

 $S = \{a, b, c, d\}$

We write ($a \in S$) to denote that a is an element of the set S. The notation $e \notin S$ denotes that e is not an element of the set S .

Another way to describe a set is to use set builder notation

The set 0 of odd positive integers less than 10 can be expressed by $0 = \{1, 3, 5, 7, 9\}$.

OR

O = $\{x \mid x \text{ is an odd positive integer} < 10\}$ / O = $\{x \in Z^+ | x \text{ is odd and } x < 10\}$

List of Unique sets

Interval Notation

- 1. Closed interval $[a, b]$
- 2. Open interval (a, b)

If A and B are sets, then A and B are equal if and only if

 $\forall x (x \in A \leftrightarrow x \in B)$. We write $A = B$, if A and B are equal sets

The sets $\{1, 3, 5\}$ and $\{3, 5, 1\}$ are equal, because they have the same elements.

 $\{1, 3, 3, 5, 5, 5\}$ is the same as the set $\{1, 3, 5\}$ because they have the same elements

Empty Set/ Null set

A set that has no elements, is denoted by \emptyset or by $\{\}$.

Cardinality

The cardinality is the number of distinct elements in S. The cardinality of S is denoted by $|S|$.

examples: $A = \{1, 2, 3, 7, 9\}$ $|A| = 5$ $\emptyset = \{\}$ $|\emptyset| = 0$ $A = \{1, 2, 3, \{2, 3\}, 9\}$ $|A| = 5$ ($\{2,3\}$ is counted as one) $\{\emptyset\} = \{\{\}\}\$ $|\{\emptyset\}| = 1$

Infinite

.

A set is said to be infinite if it is not finite. The set of positive integers is infinite.

example: Z = {0,1,2,3............}

Subset

The set A is said to be a subset of B if and only if every element of A is also an element of B

We use the notation $A \subseteq B$ to indicate that A is a subset of the set B.

 $A \subseteq B \leftrightarrow \forall x (x \in A \rightarrow x \in B)$

 $(A \subseteq B) \equiv (B \supseteq A)$

For the set S

1. ∅ ⊆ S 2. S ⊆ S

To show that two sets A and B are equal, show that $A \subseteq B$ and $B \subseteq A$.

Proper Subset

The set A is a subset of the set B but that $A \neq B$, we write $A \subset B$

and say that A is a proper subset of B .

 $A \subset B \leftrightarrow (\forall x \ x \in A \rightarrow x \in B)$ $A \exists x \ (x \in B \land x \notin A)$

Venn Diagram

 $A = 1,2,3,4,7$ (black)

 $B = 0,3,5,7,9$ (purple)

 $C = 1,2$ (red)

Power Set

The set of all subsets.

If the set is S . The power set of S is denoted by $P(S)$. The number of elements in the power set is 2^S

example:

 $S = \{1,2,3\} = \{0, 1, 2, 3, 1, 2, 1, 3, 2, 3, 1, 2, 3\}$

 $P(S) = 2^S = 2^3 = 8$

The power set of an empty set is

 $p(\emptyset) = {\emptyset}$

The power set of the set $\{\emptyset\}$ is

 $P({\emptyset}) = {\emptyset, {\emptyset}}$

The ordered *n***-tuple**

The ordered collection that has a_1 as its first element, a_2 as its second element, ..., and an as its nth element. $(a1, a2, \ldots, an)$

ordered 2-tuples are called ordered pairs (e.g., the ordered pairs (a, b))

Cartesian Products

the set of all ordered pairs (a, b) , where $a \in A$ and $b \in B$ denoted by $A \times B$

Example:

$$
A = \{1,2\},\ B = \{a,\ b,\ c\}
$$

 $A \times B = (1, a)$, $(1, b)$, $(1, c)$, $(2, a)$, $(2, b)$, $(2, c)$.

 $|A \times B| = |A| \times |B| = |2 \times 3| = |6|$

The Cartesian product of more than two sets.

A X B x C, where A = $\{0, 1\}$ B = $\{1, 2\}$, and C = $\{0, 1, 2\}$

 $A \times B \times C = \{(0,1,0), (0,1,1), (0,1,2), (0,2,0), (0,2,1), (0,2,2),$

 $(1,1,0),(1,1,1),(1,1,2),(1,2,0),(1,2,1),(1,2,2)\}.$

Set Operations

Unions

The set that contains elements that are either in A or in B , or in both.

A \cup B={ $x \mid x \in A \lor x \in B$ }

Example:

The union of {1, 3, 5} and {1, 2, 3} is {1, 2, 3, 5}

Unions Can Be Generalized

using the notation:

$$
A_1 \cup A_2 \cup \dots \cup A_n = \bigcup_{i=1}^n A_i
$$

Intersection

The set that contains those elements that are in both A and B .

 $A \cap B = \{x \mid x \in A \land x \in B\}$

The intersection of $\{1, 3, 5\}$ and $\{1, 2, 3\}$ is set $\{1, 3\}$

Two sets are called disjoint if their intersection is the empty set.

 $A \cap B = \emptyset$

Intersections Can Be Generalized

using the notation:

$$
A_1 \cap A_2 \cap \dots \cap A_n = \bigcap_{i=1}^n A_i
$$

Difference

The set containing elements that are in A but not in B

A - B={ $x | x \in A \wedge x \notin B$ }

 $A = \{1,3,5\}$ B= $\{1,2,3\}$

 $A - B = \{5\}$

Complement

An element x belongs to U (a universal set) if and only if $x \notin A$

 $U = \{1,2,3,4,5\}$, $A = \{1,3\}$

 $A\Gamma_5 = \{2,4,5\}$

Set Identities

(same as the ones in logic)

Exercise:

Prove that $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

Can be solved 2 ways

$\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$.

$$
x \in \overline{A \cap B}
$$

\n
$$
x \notin A \cap B
$$

\n
$$
\neg((x \in A) \land (x \in B))
$$

\n
$$
\neg(x \in A) \lor \neg(x \in B)
$$

\n
$$
x \notin A \lor x \notin B
$$

\n
$$
x \in \overline{A} \lor x \in \overline{B}
$$

\n
$$
x \in \overline{A} \cup \overline{B}
$$

by assumption defn. of complement defn. of intersection 1st De Morgan Law for Prop Logic defn. of negation defn. of complement defn. of union

OR

 $\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$.

$$
x \in \overline{A} \cup \overline{B}
$$
 by assumption
\n
$$
(x \in \overline{A}) \lor (x \in \overline{B})
$$
 defn. of union
\n
$$
(x \notin A) \lor (x \notin B)
$$
 defn. of complement
\n
$$
\neg(x \in A) \lor \neg(x \in B)
$$
 defn. of negation
\n
$$
\neg((x \in A) \land (x \in B))
$$
 by 1st De Morgan Law for Prop Logic
\n
$$
\neg(x \in A \cap B)
$$
 defn. of intersection
\n
$$
x \in \overline{A \cap B}
$$
 defn. of complement

We can also solve them using set builder notations.

Function

A and $B =$ nonempty sets

function f from A to B is an assignment of exactly one element of B to each element $of A.$

We write $f(a) = b$ if b is the unique element of B assigned by the function f to the element a of A .

If f is a function from A to B, we write $f: A \rightarrow B$

example:

Assignment of grades in a discrete mathematics class.

The function f maps A to B .

Domain: A

Co-Domain: B

 $f \ a = b$

 b is the image of a

 a is a preimage of b

The range, or image, of f is the set of all images of elements of A .

Domain = $\{a, b, c, d, e\}$ Co-Domain = ${1,2,3,4,5,6,7}$ Range = ${1,3,4,5,7}$

Let f1 and f2 be functions from A to R. Then $f1 + f2$ and f1 f2 are also functions from A to R defined for all $x \in A$ by

$$
f1 + f2
$$
 (x) = $f1(x) + f2(x)$, $(f1f2)(x) = f1$ x $f2(x)$.

example:

 $f1(x) = x^2$ and $f2(x) = x - x^2$.

What are the functions $f1 + f2$ and $f1f2$?

 $(f1+f2)(x)=f1(x)+f2(x)=x^2+(x-x^2)=x$

 $(f1f2)(x) = f1(x)f2(x) = x^2(x-x^2) = x^3-x^4$.

 $f =$ function from A to B.

$$
S =
$$
subset of A .

The image of S under the function f is the subset of B that consists of the images of the elements of S .

Denoted by:

$$
f(S) = \{ t \mid \exists s \in S \ (t = f \ (s)) \}.
$$

or shortly $\{f \mid s \in S\}.$

example:

 $A = \{a, b, c, d, e\}$ $B = \{1, 2, 3, 4\}$ $f(a) = 2$, $f(b) = 1$, $f(c) = 4$, $f(d) = 1$, $f(e) = 1$. $S = \{b, c, d\} \subseteq A$ image of $S = \{b, c, d\}$ is $f(S) = \{1, 4\}$

One-to-One function (injective)

if $f(a) = f(b)$ implies that $a = b$ for all a and b in the domain of f.

(every case is unique / no 2 f(a) are the same) example:

onto function (surjective)

If and only if for every element $b \in B$ there is an element $a \in A$ with $f(a) = b$.

(every f(a) links to f(b))

example:

One-to-one correspondence (bijection)

if it is both one-to-one and onto.

example:

a	$f(a) = 1$	
b	2	$f(b) = 3$
a	3	$f(c) = 5$
a	5	$f(d) = 2$
$f(e) = 4$	Co-Domain = {1,2,3,4,5}	

exercise:

Determine if $f(x) = x + 1$ from set of ints to set of ints is 1 to 1

 $f(a) = (a + 1)$ $f(b) = (b) + 1$

 $a + 1 = b + 1$ $a = b + 1 - 1$ $a = b$ ∴ $f(x)$ is one-to-one

Determine if $f(x) = x^2$ from set of ints to set of ints is 1 to 1

$$
f(a) = a^2 \quad f(b) = b^2
$$
\n
$$
a^2 = b^2
$$
\n
$$
\pm a = \pm b
$$
\n
$$
a \text{ may be not equal } b
$$
\n
$$
\therefore f \times \text{ is NOT one-to-one}
$$

determine if $f(x) = (2x-1)/3$ is onto $f(x) = y$ $(2x-1)/3 = y$ $2x-1 = 3y$ $2x = 3y + 1$ $x = (3y+1)/2$ $f(x) = y$ $(2x - 1)/3 = y$ 2 $((3y+1-1)/2)/3 = y$ $(3y+1-1)/3 = y$ $3y/3 = y$ $y = y$ ∴ $f \, x$ is onto

Inverse Functions

f = one-to-one correspondence from the set A to the set B.

The inverse function of f= function that assigns to an element b belonging to B the unique element a in A.

basically

 $f(a) = b$

 f^{-1} (b) = a

A one-to-one correspondence is called invertible because we can define an inverse of this function.

A function is not invertible if it is not a one-to-one correspondence, because the inverse of such a

function does not exist.

Example:

f = function from $\{a, b, c\}$ to $\{1, 2, 3\}$

 $f(a) = 2, f(b) = 3, f(c) = 1$

Is f invertible, and if it is, what is its inverse?

 f is invertible because it is a one-to-one correspondence.

 $f^{-1}(1) = c$, $f^{-1}(2) = a$, and $f^{-1}(3) = b$

Composition of the Functions f and g

- $g =$ function from the set A to the set B
- f = function from the set R to the set C

The composition of the functions f and g, denoted by $f \circ g$, is defined by $(f \circ g)$ $a = (f g (a))$.

Note: the composition f ∘ g cannot be defined unless the range of g is a subset of the domain of f .

Example:

 $g =$ function from the set {a, b, c} to itself

 $g(a) = b$, $g(b) = c$, and $g(c) = a$.

f = function from the set $\{a, b, c\}$ to the set $\{1, 2, 3\}$

 $f(a) = 3$, $f(b) = 2$, and $f(c) = 1$

What is the composition of f and g, and what is the composition of g and f?

1)The composition of f and g (i.e., (f ∘ g)): (f ∘g)(a) = 2, (f ∘g)(b) = 1, (f ∘g)(c) = 3

2)The composition of g and f (i.e., (g ∘ f)) cannot be defined because the range of f is NOT a subset of the domain of g .

another example

f and g: functions from the set of integers to the set of integers $f(x) = 2x + 3$ g(x) = $3x + 2$

find the composition of f and g and the composition of g and f ?

1)The composition of f and g (i.e., (f ∘g))

 $(f \circ g)(x) = f \cdot g \cdot x = 2 \cdot 3x + 2 + 3 = 6x + 7$

2)The composition of g and f (i.e., (g ∘f))

 $(a \circ f)(x) = a f x = 3 \cdot 2x + 3 + 2 = 6x + 11$

Graph of functions

 $f =$ function from A to B.

The graph of the function f is the set of ordered pairs $\{(a, b) | a \in A \text{ and } b \in B\}$.

example:

The graph of $f(x) = x^2$ from Z to Z.

Some Important Functions

1. Floor function $(y = \lfloor x \rfloor)$ take a real number, and give the biggest integer that's smaller than that number examples:

 $[2.5] = 2$

- $|-2.5| = -3$
- 2. Ceiling function $(y = [x])$

take a real number, and give the smallest integer that's bigger than that number examples:

 $[2.5] = 3$ $[-2.5] = -2$

Useful Properties

1. $|x| = - \lfloor x \rfloor 2$. $\lceil -x \rceil = - |x| 3$. $|x + n| = |x| + n$ 4. $\lfloor x \rfloor + n \rfloor = \lfloor x \rfloor + n$

examples:

- $1.1.51 = 0$
- $2.$ [-1.2] = -1
- $3. |0.3 + 2| = |0.3 + 2 = 0 + 2 = 2$
- $4. [1.1 + [0.5]] = [1.1] + [0.5] = 2 + 1 = 3$

Chapter 3

Relations

- Relation: relationships between elements of sets
- Relations are is just a subset of the Cartesian product of the sets.
- Binary relations: sets of ordered pairs
- The most direct way to express a relationship between elements of two sets is to use ordered pairs made up of two related elements.

A and $B =$ sets

binary relation from A to B is a subset of $A \times B$. = a set R of ordered pairs, where first element is a and the 2nd element is b

We use $a R b$ to denote that $(a, b) \in R$, and to denote that $(a, b) \notin R$.

we also say a is said to be related to b by R when (a, b) belongs to R

example

 $A = \{0, 1, 2\}$

 $B = \{a, b\}.$

Roster notation = Roster form of set (denoted by R) $R = \{(0, a), (0, b), (1, a), (2, b)\} = a$ relation from A to B

$$
a\not\not\not\not b
$$

 \sim \sim

 \sim \sim

we can also denote them using the following

Functions as Relations

function f from a set A to a set B assigns exactly one element of B to each element of A.

The graph of f is the set of ordered pairs (a, b) such that $b = f(a)$. (explain why)

Because the graph of f is a subset of $A \times B$, is a relation from A to B .

Relations on a Set

relation on the set A : a relation from A to A

or a relation on a set A : a subset of $A \times A$.

The identity relation I_A on a set A is the set $\{a, a \; \{a \in A\}\}\$

(we take element of a and b, that fit the criteria)

Example = $A = \{1, 2, 3\}$

 $I_A = \{(1, 1), (2, 2), (3, 3)\}$

example:

 $A = set \{1, 2, 3, 4\}.$

Which ordered pairs are in the relation $R = \{(a, b) | a \text{ divides } b\}$ --> (note: b/a not the other way, also it could be $a = b$ or $a > b$ or $a \le b$)

solution = we need to find all the pairs where b/a is an int

 ${(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (3,4)}$

another example

 $A = \{-1, 0, 1, 2\}$

Which ordered pairs are in the relations

```
R_1 = \{(a, b) | a \le b\}=\{ (-1, 0), (-1, 1), (-1, 2), (0, 1), (0, 2), (1, 2) \}R_2 - {{a,b}|a > b }
= \{(0,-1), (1,0), (1,-1), (2,1), (2,0), (2,-1)\}R_3 - \{\{a,b\} \mid a = b\}= \{(-1,-1), (0,0), (1,1), (2,2)\}R_4 - {{a,b}| a = -b}
= \{(-1,1),(0,0),(1,-1)\}R_5 - {{a,b}| a = b or a = -b}
= (-1, -1), (0, 0), (1, 1), (2, 2), (-1, 1), (1, -1)R_6 - {{a,b}| 0 ≤ a + b ≤ 1 }
=\{ (-1, 1), (-1, 2), (0, 0), (0, 1), (1, -1), (1, 0), (2, -1) \}
```
number of relations on set with n elements

because a relation on a set A is simply a subset of $A \times A$.

we can determine the number of subsets on a finite set using the following

$$
A \times A = A^2 = n^2
$$

to determine the number of relations on set we use the following formula

 2^{n^2}