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Chapter 1: Logic

Propositional Logic (Calculus): It deals with propositions (statements that are either true or
false (but not both)).

Propositions are denoted by letters, often P and Q.
True values are represented by T, and false values by F.

Propositions can be:

Atomic: Single proposition.
Compound: Multiple propositions linked by logical operators.

Truth Table

A truth table is a tool that lists all possible truth values of a logical statement, showcasing the
effects of each logical operator and revealing the resulting truth value of the statement.

Logical Operators:

(will use q,p,r and as examples, but any letter works) 1.Negation: Read as NOT P, and
written as $\neg$ p, reverses the truth value of P

P =P
True False

False True

2.Conjunction: Read as Q and P, and written as QAP, is true if p and g are both true

P Q PAQ
True True True

True False False
False True False

False False False

3.Disjunction: read as P OR Q, written as P Vv Q, is only false if p and g are both false

P Q PvaQ
True True True

True False True



P Q PvQ
False True True

False False False

4.Exclusive OR: read as P XOR Q, written as P @ Q, is true if either P or Q are True, but
not both

P Q PeQ
True True False
True False True
False True True

False False False

5.Implication: read as P implies Q, written as P—Q, is only false of P is true and Q is false,

P Q P—-Q
True  True True
True False False
False True True

False False True

6.Biconditional: read as P if and only if Q, written as P <= Q. is only true if P and Q are
the same value.

P Q P—Q
True True True
True False False
False True False

False False True
Exercise: Solve (P * Q) v ~R

(PAQ) (PAQ)V-~R
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P Q@ R (P*Q) (P QV-~R
F T F F
F F F F T

Components of Implication (P — Q):

Converse:

Original Statement: If it is raining, then it is cloudy. (P — Q)

Converse (Not the same): If it is cloudy, then it is raining. (Q — P)
Inverse:

Original Statement: If it is raining, then it is cloudy. (P — Q)

Inverse (Not the same): If it is not raining, then it is not cloudy. (=P — —Q)
Contrapositive:

Original Statement: If it is raining, then it is cloudy. (P — Q)

Contrapositive (Same): If it is not cloudy, then it is not raining. (-Q — 7P)

Logical Operator Precedence:

Negation (™) - Highest precedence.
Conjunction (AND, A)
Disjunction (OR, V)

Conditional (—)

Biconditional (<) - Lowest precedence.
If the operators are the same, priority goes from left to right.

Exercise: Assume P: T Q: F R:F, Find the value of: PV(QA"R)<&P
Pv(QA"R)=P

TV(FAF)=T
TV(FAT)T
TVFST

ToT
T

Applications of Propositional Logic:
1. Translating logic expressions to English:

Examples:
I am hungry (p) if and only if (<) | will eat (q) P—~Q



If (—) it is snowing (p), then | will wear a coat (q) P—Q
The store is not closed ~P
Bit-wise operations
Binary system: Utilizes bits, each with two values (0 or 1), representing true (1) or false (0).

Boolean variables: variables that can only hold true or false values.

Logical Operator Bit operator

- NOT
v OR

A AND
® XOR

Bit string: it is a sequence of zero or more bits.
String Length: number of bits in the Bit string

e.i: 101010011 is a bit string with length = 9

Logical Equivalence

Tautology: compound proposition that is always true (Ex: P $\lor$$\neg$P)
p -p P v-P
t f t
f t t

Contradiction: compound proposition that is always false (Ex: P A—P)

p —p P AN-P
t f f
f t f

Contingency: compound proposition that is either true or false (Ex: P — Q)

Exercise: show that — (P v Q) = (- P A —=Q) using truth table

P Q PvQ) —-(PvQ) (-PA-Q) -(PVvQ) < -PA-Q)
T T T F F T
T F T F F T
F T T F F T
F F F T T T



Equivalence rules:

Equivalence rule Name
PAT=P |dentity
PvF=P

PAF=F Domination
PvT=T

PAP=P Idempotent
PvP=P

-PvP=T Negation
-PAP=F

~~P)=P Double Negation
PAQ=Q"*P Commutative
PvQ=QvVvP

(PvQy VR=Pv(QVR) Associative

(PAQ)AR=PA(Q"R)

Pv(Q*R)=(PvQ)”*(PvR) Distributive
PAQVR)=(P*"Q)v(P*R)

~PvQ)=~P*~Q De Morgan's Law
~P*Q)=~Pv~Q

Pv(P*Q)=P Absorption
PAPvQ)=P

Implications Logical Rules

note: there are others, these 2 are the most important ones

Statement 1 Statement 1
P—-Q ~PvQ
P—-Q ~Q —>~P
Bicondintional Rules

note: there are others, this 1 is the most important ones

Statement1 Statement 2

P Q (P—-Q)*(Q—-P)
Example 1: Show that the following is a tautology.
- (PAQ)— (PVQ)
-(PAQ)=(=PV-Q)

—~PVv-Q)—->PVvQ)=(-PVP)V(=QVQ)(



TVvT=T

Example 2: Show that the following is logically equivalent.
—(PV(=P A Q) = (=P A -Q)

(=P A =(=P A Q)

(=P A (=P Vv —Q)

(-PAP)V(=PA-Q)

FV(PA-Q)

—-PA-Q)

PREDICATES AND QUANTIFIERS

predicates: statements that are not propositions
examples:

Ex2: Q(x, y): x= y+3

Ex3: R(X,Y,Z: X+Y=2Z.

QUANTIFIERS:

1. Universal quantifier ( V), for all

* P(x) is true for all values of x in the universe of discourse (domain). = Vx p(x) * Vx p(x) is
read as: “for all x p(x) “, “ for every x p(x)”

examples:

What is the truth value Vx p(x), where p(x) is (x < 10). The domain is all positive integers not
exceeding 47

Sol : vx p(x) = P(1) " p(2) » p(3) * p(Wh)
T~"T""T"F=F

Translate the following statement into English language:
Vx Q(x), where Q(x) is “x has two parents” and the domain is all people.
Sol: every person has two parents

2. Existential Quantifier ( 3 ), for some



* P(x) is true if an element (x) is true ). = 3 p(x) * 3 p(x) ) is read as: “there is a x such that

p(x) “,“ there is at least one x such that p(x)”

Example:

what is the truth value of Ix p(x), where p(x) is “x * x > 10” and the domain is all positive
integers
not exceeding 47?

Ax p(x) = P(1) v p(2) vV p(3) V p(4) = True, since p(4) is True

Binding Variable
A variable in a predicate might be:

Free: p(x): x has a cat
Bound to either
to a value: p(Ali): Ali has a cat. (x is bound to ali)

To a quantifier: Vx 3y like(x, y), x and y are bound to V 3 respectively

Negation
to negate we first change the Quantifier, then negate the inside statement example:
There is a student in the class who has taken Calculus. 3Ix p(x)

becomes: Every student in the class has not taken calculus. 73x P(x) = V x = P(x)

NESTED QUANTIFIER

tldr: more than one expression
example

Vx(Vy (x+y =y +x))is true, for every values x and y x + y = y + x Domain: Real Numbers.
Note: Vx(Vy (x+y =y + x)) is the same as Vx Vy x + y =y + x (parentheses are optional)

to negate a nested quantifier we negate each quantifier then move to the other one,
negating it as well

example: “"VxVy 3z (P(x,y) AQ(y,z) ) — Ix~Vy Tz (P(x,y) AQ(y,z)) — Ix Ay 73z (P(x,y) A
Q(y,z)) — Ix Ty Yz~ (P(x,y) AQ(y,z)) — Ix Ty Vz("P(x,y) VQ(y,z))

Chapter 2



Sets

An unordered collection of objects.

The objects in a set are called the elements, or members, of the set. A set is said to contain
its elements

S={a, b, c, d}

We write (a € S) to denote that a is an element of the set S. The notation e € S denotes that
e is not an element of the set S.

Another way to describe a set is to use set builder notation

The set 0 of odd positive integers less than 10 can be expressed by 0 = {1, 3, 5, 7, 9}.
OR

O = {x | x is an odd positive integer <10} / O = {x € Z*| x is odd and x<10}

List of Unique sets

Letter Represents

N Natural Numbers (0-infinity)
V4 All integers

zt All Positive integers

Q All Rational Numbers

R Real Numbers

R* Positive Real Numbrers

C Complex Numbers

Interval Notation

Closed interval [a, b]
Open interval (a, b)

Interval Implication
[a, b] {x | asx<|b}
[a, b) {x | asx<|b}
(a, b] {x | a<x<|b}
(a, b) {x | a<x<b}



If A and B are sets, then A and B are equal if and only if
Vx (x €A~ x €B). We write A=B, if A and B are equal sets
The sets {1, 3, 5} and {3, 5, 1} are equal, because they have the same elements.

{1,3,3,5,5, 5}is the same as the set {1, 3, 5} because they have the same elements

Empty Set/ Null set

A set that has no elements, is denoted by @ or by { }.

Cardinality
The cardinality is the number of distinct elements in S. The cardinality of S is denoted by |S] .

examples:
A={1,2,3,7,9}
4] =5

0={
0] =0

A={1,2,3, {23} 9}

|4] =5 ({2,3} is counted as one)

{0} = {{}}
{2} =1
Infinite

A set is said to be infinite if it is not finite. The set of positive integers is infinite.

example: Z={0,1,2,3............ }

Subset

The set A is said to be a subset of B if and only if every element of A is also an element of B

We use the notation A € B to indicate that A4 is a subset of the set B .

ACSB < Vx(x€ A— x €B)



(AC B)= (B2 A)

For the set S

ScS
To show that two sets A and B are equal, show that A € B and B € A.
Proper Subset
The set A is a subset of the set B but that A # B, we write A ¢ B
and say that 4 is a proper subset of B.

AcB & (Vx xEA—x€B) Adx(x€BAx ¢&A)

Venn Diagram
A= 1,2,3,4,7 (black)

B = 0,3,5,7,9 (purple)

C = 1,2 (red)

Power Set

The set of all subsets.

If the set is S. The power set of S is denoted by P(S). The number of elements in the power

setis 25



example:
S={123={0,1,2,3,12,13, 23, 1,23}

P (S)=25=23=8
The power set of an empty set is

p(?) = {0}

The power set of the set {9} is

P{0}) = {0, {0}}

The ordered n-tuple

The ordered collection that has a1 as its first element, a2 as its second element, ...

an as its nth element. (a1, a2,.....an)

ordered 2-tuples are called ordered pairs (e.g., the ordered pairs (a, b))

Cartesian Products

the set of all ordered pairs (a, b), where a € A and b € B denoted by A x B
Example:

A={12},B= {a,b,c}

AxB= (1,a), (1,b), (1,¢) , (2,a) , (2,b) , (2,¢) .

|Ax B| = |A] * |B] =[2x3|=]6]

The Cartesian product of more than two sets.
AXBxC,whereA={0,1}B={1,2},andC={0,1,2

Ax B x C ={(0,1,0),(0,1,1),(0,1,2),(0,2,0),(0,2,1),(0,2,2),

(1,1,0),(1,1,1),(1,1,2),(1,2,0),(1,2,1),(1,2,2)}.

Set Operations

, and



Unions
The set that contains elements that are eitherin 4 or in B , or in both.

AUB={x|xeAV x € B}

u

A U B is shaded.

Example:

The union of {1, 3, 5} and {1, 2, 3}is {1, 2, 3, 5}
Unions Can Be Generalized

using the notation:

A UA, U UA, = | A4,

i=l1

Intersection
The set that contains those elements that are in both 4 and B.

ANB={x|xeAAXx€eB}

A n B is shaded.

The intersection of {1, 3, 5} and {1, 2, 3} is set {1, 3}

Two sets are called disjoint if their intersection is the empty set.



ANB=0
Intersections Can Be Generalized

using the notation:

AjnAn-nA, =(A
i=1

Difference
The set containing elements that are in A but notin B
A-B={x|x e AA X & B}
A={1,3,5} B={1,2,3}

A-B = {5}

A — B is shaded.

Complement
An element x belongs to U (a universal set ) ifand only if x ¢ A
U= {12345} , A= {1,3}

A = {2,4,5)



" (
] o]
S A is shaded. S
Set Identities
TAELE Set Identities.
Identity Name
AnU=A Identity laws
Aui=A
AuU=U Domination laws
AnP=9
AUA=A Idempotent laws
ANnA=A
[A_] =A Complementation law
AUB=BUA Commutative laws
ANnB=BnNnA




TAELE Set Identities.

AUuBuUuC)=(AuB)uC Associative laws
AnNnBNnCO)=(AnBINnC

AUBNO) =AUBIN(AU Q) Distributive laws
ANBUCO)=ANBUANC)

ANB=AUB De Morgan’s laws
AUB=ANB

AUANB)=A Absorption laws
ANAUB)=A

AUA=U Complement laws
ANA=0

(same as the ones in logic)

Exercise:

Prove that AN B = A UB.

Can be solved 2 ways

ANBCAUB.
reANB by assumption
xZ ANB defn. of complement

—((z € A)A (z € B)) defn. of intersection
—(x € A)V —=(x € B) 1st De Morgan Law for Prop Logic

rZAVré&B defn. of negation
re€AVzeB defn. of complement
r€AUB defn. of union

OR

AUBCANB.



rcAUB by assumption

(xe A)V (z € B) defn. of union
(€ A)V (z € B) defn. of complement
-(x € A)V-(x € B) defn. of negation

(

=((x € A)A(z € B)) by 1st De Morgan Law for Prop Logic
( ) defn. of intersection

re€AND defn. of complement

We can also solve them using set builder notations.

Function

A and B = nonempty sets

function f from Ato B is an assignment of exactly one element of B to each element
of A.

We write f(a)=bif b is the unique element of B assigned by the function f to the
element a of A.

If f is a function from A to B, we write f:A— B

example:



Adams ] l; e A

Chou o ~~ _»®8B

Goodfriend e ‘,~ e (C
.-j-'#f##

Rodriguez o~ oD

Stevens =) o F

Assignment of grades in a discrete mathematics class.

The function f maps A to B.

Domain: A
Co-Domain: B
fa=>b

b is the image of a
a is a preimage of b

The range, or image, of f is the set of all images of elements of A.



Domain = {a, b, c,d, e}

Co-Domain = {1,2,3,4,5,6,7}

Range = {1,3,4,5,7}

Wi~ O U1 W N =

Let f1 and f2 be functions from A to R. Then f1 + f2 and f1 f2 are also functions from A to
R defined for all x € A by

f1+£2 (x)= f1(x) + f2(x), (f1f2)(x)=f1 x f2(x).
example:

f1(x)=x%and f2(x)=x - x2

What are the functions f1 + f2 and f1f2 ?
(F1+2)(x)=F1 (X)+2(x)=x2+(x-X2)=x

(F1£2)(x) =f1(x)f2(X) =x3(x-x2)=x3-x*.

f = function from A to B.
S = subset of A.

The image of S under the function f is the subset of B that consists of the images of the
elements of S.

Denoted by:
f©S) ={t] Ises (t=f (s)) }.

or shortly {f s | s € S}.



example:
A={a,b,c,d,e}B={1,2,3,4}f(a)=2, f(b) =1, f(c)=4, f(d) =1, f(e) = 1.
S={b,c,d} € A

image of S ={b, c, d} is f(S) = {1, 4}

One-to-One function (injective)
if f(a) = f(b) implies that a = b for all a and b in the domain of f.

(every case is unique / no 2 f(a) are the same)
example:

; f@) =1

3 Fb) =3

;} ) =7

6 fF(d) =4

! fe) =5
A — B

onto function (surjective)

If and only if for every element b € B there is an element a € A with f(a) = b.

(every f(a) links to f(b) )



example:

a . fl@=1
b o b) =
i 7 fb) =1
d i flc)=4
e f(d) =2
Co-Domain = {1,2,3,4}
fle)=3
A — B Range = {1,2,3,4}

One-to-one correspondence (bijection)

if it is both one-to-one and onto.

example:
2\ [ 1\ f@=1
b 2 f(b) =3
C 3
d 4 fler=5
e 5 f(d) =2
Co-Domain = {1,2,3,4,5}
fle) =4
A - B Range = {1,2,3,4,5}

Determine if f(x) = x + 1 from set of ints to set of ints is 1 to 1

f(a)=(a+1) f (b) =(b)+1



a+1=bH+1
a=b+1-1
a=b

~ f (x) is one—to—one

Determine if f(x) = x2 from set of ints to set of ints is 1 to 1

a may be not equal b

~ f x is NOT one—-to—one

determine if f(x) = (2x-1)/3 is onto
f(x)=y

(2x-1)/3 =y

2x-1 =3y

2x = 3y+1

x = (3y+1)/2

f(x) =y

(2x-1)3=y

2 ((3y+1-1)/2)13 =y
(By+1-1)/3 =y
3yl3=y

y=y

~ f x isonto



Inverse Functions

f = one-to-one correspondence from the set A to the set B.

The inverse function of f= function that assigns to an element b belonging to B the unique
element a in A.

basically
f(a) = b
f1 () =a

A one-to-one correspondence is called invertible because we can define an inverse of this
function.

A function is not invertible if it is not a one-to-one correspondence, because the inverse of
such a

function does not exist.

Example:

f =function from {a, b, ¢} to {1, 2, 3}

fla) = 2,f(b) =3, flc) =1

Is finvertible, and if it is, what is its inverse?

f is invertible because it is a one-to-one correspondence.

My =c, F'2)=a, and F13)=b



Composition of the Functions f and g

g = function from the set A to the set B
f = function from the set B to the set C

The composition of the functions f and g, denoted by f o g, is defined by (f o g) a = (f g (a)).
(fog)a)

/ “‘\\ \
A >/

Note: the composition f o g cannot be defined unless the range of g is a subset of the
domain of f .

Example:

g = function from the set {a , b, c} to itself

g(a)=b, g(b) =c, and g(c) =

f = function from the set{a , b, c}to theset{1,2,3}
fa)=3,f(b)=2,andf(c) =1

What is the composition of f and g, and what is the composition of g and f ?
1)The composition of fand g (i.e., (fe g)): (feg)(a) =2, (feg)(b)=1, (feg)(c)=

2)The composition of g and f (i.e., (g o f)) cannot be defined because the range of f is
NOT a subset of the domain of g .

another example
f and g: functions from the set of integers to the set of integers f(x) = 2x + 3 g(x) = 3x + 2

find the composition of f and g and the composition of g and f ?



1)The composition of fand g (i.e., (f og))
(feg)X)=f g x =2 3x+2 +3=6x+7
2)The composition of g and f (i.e., (g of))

(@of)Xx)=g f x =3 2x+3 +2=6x + 11

Graph of functions

f = function from A to B.
The graph of the function f is the set of ordered pairs {(a, b)| a € Aand b € B}.

example:

e (-3,9) (3,9 e

e(-2.4) (2,4)®

-L1)e e (l,1)

(0,0)

The graph of f(x) = x? from Z to Z.

Some Important Functions

Floor function (y = |x])

take a real number, and give the biggest integer that's smaller than that number
examples:

|2.5] =2

|-2.5] =-3

Ceiling function (y = [x])

take a real number, and give the smallest integer that's bigger than that number
examples:



Useful Properties

1.]-xX]=-[.x]12.[- x]=-1x]3.[x+n]=|x]+n4.[ x_+n]=[_x_]+n

examples:
|.5] =0
[-1.2] = -1
[0.3+2]|=]03]|+2=0+2=2
[1.1+[0.5]] =[1.1]+[0.5]=2+1=3

Chapter 3

Relations

Relation: relationships between elements of sets
Relations are is just a subset of the Cartesian product of the sets.
Binary relations: sets of ordered pairs

The most direct way to express a relationship between elements of two sets is to
use ordered pairs made up of two related elements.

A and B = sets

binary relation from A to B is a subset of A x B. = a set R of ordered pairs, where first
element is a and the 2nd elementis b

aRb
We use a R b to denote that (a, b) € R, and to denote that (a, b) € R.

we also say a is said to be related to b by R when (a, b) belongs to R

example
A={0,1,2}
B ={a, b}.

Roster notation = Roster form of set (denoted by R)
R ={(0, a), (0, b), (1, a), (2, b)} = a relation from A to B



we can also denote them using the following

Oe
\ R tl b
®
0 X X
' I X
Using arrows / ®h 2 X
2. Using table

Functions as Relations
function f from a set A to a set B assigns exactly one element of B to each element of A.
The graph of f is the set of ordered pairs (a , b) such that b = f(a). (explain why)

Because the graph of f is a subset of A x B, is a relation from A to B.

Relations on a Set
relation on the set A: a relation from A to A
or a relation on a set A: a subset of A x A.
The identity relation I, on a set A is the set {a, a {a € A}
(we take element of a and b, that fit the criteria)
Example=4 = {1, 2, 3}

IA={(1’ 1) ) (2’ 2) ’ (3’ 3)}

example:
A=set{1,2, 3,4}

Which ordered pairs are in the relation R = {(a , b)|a divides b} --> (note: b/a not the other
way, also it could be a=b ora> b ora < b)



solution = we need to find all the pairs where b/a is an int
{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (3,4)}
another example

A={-1,0,1,2}

Which ordered pairs are in the relations

R1={(a, b)la < b}

={(-1,0), (-1.1), (-1,2), (0,1), (0,2), (1,2)}
Ry -{{a,b}la>b}

={(0,-1), (1,0), (1.-1),(2,1), (2,0),(2,-1)}

R3 - {{a,b}| a = b}

={(-1,-1). (0,0), (1,1), (2,2)}

Ry -{{a,b}| a = -b}

={(-1,1).(0,0),(1.-1)}

Rs-{{a,b}| a = b ora=-b}

= (-1,-1), (0,0), (1,1), (2,2), (-1, 1), (1,-1)

Rg-{{ab}|0O<a+b<1}

={ (11, (12), (0,0, 0,1, (1,-1), (1,0), 2 -1)}

number of relations on set with n elements

because a relation on a set A is simply a subset of A4 x A.
we can determine the number of subsets on a finite set using the following
AxA=A%=n?

to determine the number of relations on set we use the following formula

on?



