
ملاحظة: المكثف بھدف لتلخیص اھم النقاط للریاضیات المتقطعة, بس ما بظمنلك تجیب العلامة الكاملة, رح تستفید من ھاظ
المكثف لو درست المادة قبل تدرس ھان, و انا مش مسؤول عن اي حد ما جاب العلامة الي بدو ایاھا

Chapter 1: Logic
Propositional Logic (Calculus): It deals with propositions (statements that are either true or
false (but not both)).

Propositions are denoted by letters, often P and Q.
True values are represented by T, and false values by F.

Propositions can be:

Truth Table

A truth table is a tool that lists all possible truth values of a logical statement, showcasing the
effects of each logical operator and revealing the resulting truth value of the statement.

Logical Operators:

(will use q,p,r and as examples, but any letter works) 1.Negation: Read as NOT P, and
written as $\neg$ p, reverses the truth value of P

P ¬P

True False

False True

2.Conjunction: Read as Q and P, and written as Q∧P, is true if p and q are both true

P Q P ∧ Q

True True True

True False False

False True False

False False False

3.Disjunction: read as P OR Q, written as P ∨ Q, is only false if p and q are both false

P Q P ∨ Q

True True True

True False True

1. Atomic: Single proposition.
2. Compound: Multiple propositions linked by logical operators.



P Q P ∨ Q

False True True

False False False

4.Exclusive OR: read as P XOR Q, written as P ⊕ Q, is true if either P or Q are True, but
not both

P Q P ⊕ Q

True True False

True False True

False True True

False False False

5.Implication: read as P implies Q, written as P→Q, is only false of P is true and Q is false,

P Q P → Q

True True True

True False False

False True True

False False True

6.Biconditional: read as P if and only if Q, written as P⟺ Q. is only true if P and Q are
the same value.

P Q P ↔  Q

True True True

True False False

False True False

False False True

Exercise: Solve (P ^ Q) v ~R

P Q R (P ^ Q) (P ^ Q) v ~R

T T T T T

T T F T T

T F T F F

T F F F T

F T T F F

F T F F T



P Q R (P ^ Q) (P ^ Q) v ~R

F F T F F

F F F F T

Components of Implication (P → Q):

Logical Operator Precedence:

If the operators are the same, priority goes from left to right.

Exercise: Assume P: T Q: F R:F, Find the value of: P∨(Q∧¬R)⟺P
P∨(Q∧¬R)⟺P

T∨(F∧¬F)⟺T

T∨(F∧T)⟺T

T∨F⟺T

T ⟺T
T

Applications of Propositional Logic:
1. Translating logic expressions to English:

Examples:
I am hungry (p) if and only if (↔) I will eat (q) P↔Q

1. Converse:
Original Statement: If it is raining, then it is cloudy. (P → Q)
Converse (Not the same): If it is cloudy, then it is raining. (Q → P)

2. Inverse:
Original Statement: If it is raining, then it is cloudy. (P → Q)
Inverse (Not the same): If it is not raining, then it is not cloudy. (¬P → ¬Q)

3. Contrapositive:
Original Statement: If it is raining, then it is cloudy. (P → Q)
Contrapositive (Same): If it is not cloudy, then it is not raining. (¬Q → ¬P)

1. Negation (¬) - Highest precedence.
2. Conjunction (AND, ∧)
3. Disjunction (OR, ∨)
4. Conditional (→)
5. Biconditional (↔) - Lowest precedence.



If (→) it is snowing (p), then I will wear a coat (q) P→Q

The store is not closed ¬P

Binary system: Utilizes bits, each with two values (0 or 1), representing true (1) or false (0).

Boolean variables: variables that can only hold true or false values.

Logical Operator Bit operator

¬ NOT

∨ OR

∧ AND

⊕ XOR

e.i: 101010011 is a bit string with length = 9

Logical Equivalence

Tautology: compound proposition that is always true (Ex: P $\lor$$\neg$P)
p ¬p P  ∨¬P

t f t

f t t

Contradiction: compound proposition that is always false (Ex: P ∧¬P)

p ¬p P  ∧¬P

t f f

f t f

Contingency: compound proposition that is either true or false (Ex: P → Q)

Exercise: show that ¬ (P ∨ Q) = (¬ P ∧ ¬Q) using truth table

P Q (P ∨ Q) ¬ (P ∨ Q) (¬ P ∧ ¬Q) ¬ (P ∨ Q) ⟺  ¬ P ∧ ¬Q)

T T T F F T

T F T F F T

F T T F F T

F F F T T T

2. Bit-wise operations

Bit string: it is a sequence of zero or more bits.
String Length: number of bits in the Bit string



Equivalence rules:

Equivalence rule Name

P ^ T = P
P v F = P

Identity

P ^ F = F
P v T = T

Domination

P ^ P = P
P v P = P

Idempotent

¬ P v P = T
¬ P ^ P = F

Negation

~(~P) = P Double Negation

P ^ Q = Q ^ P
P v Q = Q v P

Commutative

(P v Q) v R = P v (Q v R)
(P ^ Q) ^ R = P ^ (Q ^ R)

Associative

P v (Q ^ R) = (P v Q) ^ (P v R)
P ^ (Q v R) = (P ^ Q) v (P ^ R)

Distributive

~(P v Q) = ~P ^ ~Q
~(P ^ Q) = ~P v ~Q

De Morgan's Law

P v (P ^ Q) = P
P ^ (P v Q) = P

Absorption

Implications Logical Rules
note: there are others, these 2 are the most important ones

Statement 1 Statement 1

P →Q ~P v Q

P →Q ~Q →~P

Bicondintional Rules
note: there are others, this 1 is the most important ones

Statement 1 Statement 2

P ⟺  Q (P →Q) ^ (Q→ P)

Example 1: Show that the following is a tautology.

¬ (P ∧ Q) → (P ∨ Q)

¬ (P ∧ Q) = (¬ P ∨ -Q)

(¬ P ∨ -Q) → (P ∨ Q) =(¬ P ∨ P) ∨ (¬ Q ∨ Q) (



T ∨ T = T

Example 2: Show that the following is logically equivalent.

¬(P∨(¬P ∧ Q) = (¬P ∧ ¬Q)

(¬P ∧ ¬(¬P ∧ Q)

(¬P ∧ (¬¬P ∨ ¬Q)

(¬P ∧ P ) ∨ (¬P ∧ ¬ Q )

F ∨ (¬P ∧ ¬ Q )

(¬P ∧ ¬ Q )

PREDICATES AND QUANTIFIERS
predicates: statements that are not propositions

examples:

Ex2: Q(x, y): x= y+3

Ex3: R(X,Y,Z): X + Y = Z .

QUANTIFIERS:

1. Universal quantifier ( Ɐ ), for all

* P(x) is true for all values of x in the universe of discourse (domain). ➔ Ɐx p(x) * Ɐx p(x) is
read as: “for all x p(x) “ , “ for every x p(x)”

examples:

What is the truth value Ɐx p(x), where p(x) is (x < 10). The domain is all positive integers not
exceeding 4?

2. Existential Quantifier ( Ǝ ), for some

Sol : Ɐx p(x) = P(1) ^ p(2) ^ p(3) ^ p(4) 

T ^ T ^ T ^ F = F

2. Translate the following statement into English language:
Ɐx Q(x), where Q(x) is “x has two parents” and the domain is all people.
Sol: every person has two parents



* P(x) is true if an element (x) is true ). ➔ Ǝ p(x) * Ǝ p(x) ) is read as: “there is a x such that
p(x) “,“ there is at least one x such that p(x)”

Example:

what is the truth value of Ǝx p(x), where p(x) is “x * x > 10” and the domain is all positive
integers
not exceeding 4?

Ǝx p(x) = P(1) ∨ p(2) ∨ p(3) ∨ p(4) = True, since p(4) is True

Binding Variable
A variable in a predicate might be:

Negation
to negate we first change the Quantifier, then negate the inside statement example:

There is a student in the class who has taken Calculus. Ǝx p(x)

becomes: Every student in the class has not taken calculus. ¬Ǝx P(x) = Ɐ x ¬ P(x)

NESTED QUANTIFIER
tldr: more than one expression

example

Ɐx(Ɐy ( x + y = y + x )) is true, for every values x and y x + y = y + x Domain: Real Numbers.
Note: Ɐx(Ɐy ( x + y = y + x )) is the same as Ɐx Ɐy x + y = y + x (parentheses are optional)

to negate a nested quantifier we negate each quantifier then move to the other one,
negating it as well

example: ¬ⱯxⱯy Ǝz (P(x,y) ∧Q(y,z) ) → Ǝx¬Ɐy Ǝz (P(x,y) ∧Q(y,z)) → Ǝx Ǝy ¬Ǝz (P(x,y) ∧
Q(y,z)) → Ǝx Ǝy Ɐz¬ (P(x,y) ∧Q(y,z)) → Ǝx Ǝy Ɐz(¬P(x,y) ∨¬Q(y,z))

Chapter 2

1. Free: p(x): x has a cat
2. Bound to either

1. to a value: p(Ali): Ali has a cat. (x is bound to ali)
2. To a quantifier: Ɐx Ǝy like(x, y), x and y are bound to Ɐ Ǝ respectively



Sets
An unordered collection of objects.

The objects in a set are called the elements, or  members, of the set. A set is said to contain
its  elements

𝑆 = {𝑎, 𝑏, 𝑐, 𝑑}

We write (𝑎 ∈ 𝑆) to denote that 𝑎 is an element of  the set 𝑆. The notation 𝑒 ∉ 𝑆 denotes that
𝑒 is not  an element of the set 𝑆.

Another  way  to  describe  a  set  is  to  use  set  builder notation

The set 𝑂 of odd positive integers less than 10  can be expressed by 𝑂 = {1, 3, 5, 7, 9}.

OR

O = {x | x is an odd positive integer <10} / O = {x ∈ Z+| x is odd and x<10}

List of Unique sets

Letter Represents

N Natural Numbers (0-infinity)

Z All integers

Z+ All Positive integers

Q All Rational Numbers

R Real Numbers

R+ Positive Real Numbrers

C Complex Numbers

Interval Notation

Interval Implication

[𝑎, 𝑏] {𝑥 | 𝑎≤𝑥≤|𝑏}

[𝑎, 𝑏) {𝑥 | 𝑎≤𝑥<|𝑏}

(𝑎, 𝑏] {𝑥 | 𝑎<𝑥≤|𝑏}

(𝑎, 𝑏) {𝑥 | 𝑎<𝑥<𝑏}

1. Closed interval  [𝑎, 𝑏]
2. Open interval (𝑎, 𝑏)



If 𝐴 and 𝐵 are sets, then 𝐴 and 𝐵 are equal if and only if

∀𝑥 (𝑥 ∈ 𝐴 ↔  𝑥 ∈ 𝐵).  We  write  𝐴 = 𝐵,  if  𝐴  and  𝐵  are  equal sets

The sets {1, 3 , 5} and {3, 5 , 1} are equal, because  they have the same elements.

{1 , 3 , 3 , 5 , 5 , 5} is the same as the set {1, 3 , 5} because they have the same elements

Empty Set/ Null set

A set that has no elements, is denoted by ∅ or by {  }.

Cardinality
The cardinality is the number of distinct elements in 𝑆.  The cardinality of 𝑆 is denoted by |𝑆| .

examples:
𝐴 = {1, 2, 3, 7, 9}
|𝐴|  = 5

∅ = {}
|∅| = 0

𝐴 = {1, 2, 3, {2,3}, 9}

|𝐴|  = 5 ({2,3} is counted as one)

{∅} =  {{}}

|{∅} | = 1

Infinite

A set is said to be infinite if it is not finite.  The set of positive integers is infinite.

example: Z = {0,1,2,3............}

Subset
The set 𝐴 is said to be a subset of 𝐵 if and only if  every element of 𝐴 is also an element of 𝐵
.

We use the notation 𝐴 ⊆ 𝐵 to indicate that 𝐴 is a subset of the se𝑡 𝐵 .

𝐴 ⊆ 𝐵  ↔  ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)



(𝑨 ⊆ 𝑩) ≡ (𝑩 ⊇ 𝑨)

For the set S

To show that two sets A and B are equal, show that 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴.

Proper Subset
The set 𝐴 is a subset of the set 𝐵 but that 𝐴 ≠ 𝐵,  we write 𝐴 ⊂ 𝐵

and say that 𝐴 is a 𝐩𝐫𝐨𝐩𝐞𝐫 𝐬𝐮𝐛𝐬𝐞𝐭 of 𝐵.

𝐴 ⊂ 𝐵  ↔  (∀𝑥  𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)  𝖠 ∃𝑥 ( 𝑥 ∈ 𝐵 𝖠 𝑥 ∉ 𝐴)

Venn Diagram

𝐴 =  1,2,3,4,7 (black)

𝐵 =  0,3,5,7,9 (purple)

𝐶 =  1,2 (red)

Power Set
𝐓𝐡𝐞 𝐬𝐞𝐭 𝐨𝐟 𝐚𝐥𝐥 𝐬𝐮𝐛𝐬𝐞𝐭𝐬.

If the set is 𝑆. The power set of 𝑆 is denoted by 𝑃(𝑆).  The number of elements in the power

set is 2𝑆

1. ∅ ⊆ S
2. S ⊆ S



example:
𝑆 =  {1,2,3} =  {∅,  1  ,  2  ,  3  ,  1,2  ,  1,3  ,  2,3  ,  1,2,3}

𝑃  (𝑆)  = 2𝑆 = 23 = 8

The power set of an empty set is

p(∅) = {∅}

The power set of the set {∅} is

P({∅}) = {∅, {∅}}

The ordered 𝒏-tuple
The ordered  collection that has 𝑎1 as its first element, 𝑎2 as its  second element, … , and
𝑎𝑛 as its 𝑛th element. (𝑎1, 𝑎2,.....𝑎𝑛)

ordered 2-tuples are called ordered  pairs (e.g., the ordered pairs (𝑎, 𝑏))

Cartesian Products

the set of all ordered pairs (𝑎, 𝑏), where 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 denoted by 𝐴 × 𝐵

Example:

𝐴 =  {1,2}, 𝐵 =  {𝑎, 𝑏, 𝑐}

𝐴 × 𝐵 =  (1, 𝑎)  ,  (1, 𝑏)  ,  (1, 𝑐)  ,  (2, 𝑎)  ,  (2, 𝑏)  ,  (2, 𝑐)  .

|𝐴 × 𝐵|  =  |𝐴|  ∗  |𝐵|  = |2 ∗ 3| = |6|

The Cartesian product of more than two sets.
A X B x C, where A = {0, 1 } B = {1, 2}, and C = {0, 1, 2

A x B × C ={(0,1,0),(0,1,1),(0,1,2),(0,2,0),(0,2,1),(0,2,2),

(1,1,0),(1,1,1),(1,1,2),(1,2,0),(1,2,1),(1,2,2)}.

Set Operations



Unions

The set that contains elements that are either in 𝐴 or in 𝐵 , or in both.

A 𝖴 B={x |x ∈ A ∨ x ∈ B}

Example:

The union of {1, 3, 5} and {1, 2, 3} is {1, 2, 3, 5}

Unions Can Be Generalized

using the notation:

Intersection
The set that contains those  elements that are in both 𝐴 and 𝐵.

A ∩ B={x |x ∈ A ∧ x ∈ B}

The intersection of {1, 3, 5} and {1, 2, 3} is set {1, 3}

Two sets are called disjoint if their intersection is the  empty set.



𝐴 ∩ 𝐵 = ∅

Intersections Can Be Generalized

using the notation:

Difference
The set containing  elements that are in 𝐴 but not in 𝐵

A - B={x |x ∈ A ∧ x ∉ B}

A = {1,3,5} B= {1,2,3}

A - B = {5}

Complement
An element 𝑥 belongs to 𝑈 (a universal set ) if and only if 𝑥 ∉ 𝐴

𝑈 =  {1,2,3,4,5}  ,  𝐴 =  {1,3}

𝐴ҧ =  {2,4,5}



Set Identities



(same as the ones in logic)

Exercise:

Can be solved 2 ways

OR



We can also solve them using set builder notations.

Function
𝐴 and 𝐵 = nonempty sets

function 𝑓 from 𝐴 to 𝐵  is  an  assignment  of  exactly  one  element  of  𝐵  to  each element
of 𝐴.

We  write  𝑓(𝑎) = 𝑏 if  𝑏  is  the  unique  element  of  𝐵 assigned by the function 𝑓 to the
element 𝑎 of 𝐴.

If  𝑓  is  a  function  from  𝐴  to  𝐵,  we  write  𝑓: 𝐴 → 𝐵

example:



Domain: 𝐴

Co-Domain: 𝐵

𝑓 𝑎  = 𝑏

𝑏 is the image of 𝑎

𝑎 is a preimage of 𝑏

The range, or image, of 𝑓  is the set of all images of  elements of 𝐴.



Let 𝑓1 and 𝑓2 be functions from 𝐴 to R. Then 𝑓1 + 𝑓2 and 𝑓1 𝑓2 are also  functions from 𝐴 to
R defined for all 𝑥 ∈ 𝐴 by

𝑓1 + 𝑓2  (𝑥) = 𝑓1(𝑥) + 𝑓2(𝑥),  (𝑓1𝑓2)(𝑥) = 𝑓1  𝑥  𝑓2(𝑥).

example:

𝑓1(𝑥) = 𝑥2 and 𝑓2(𝑥) = 𝑥  −  𝑥2.

What are the functions 𝑓1 + 𝑓2 and 𝑓1𝑓2 ?

(f1+f2)(x)=f1(x)+f2(x)=x2+(x-x2)=x

(f1f2)(x) =f1(x)f2(x) =x2(x-x2)=x3-x4.

𝑓 = function from 𝐴 to 𝐵.

𝑆 = subset of 𝐴.

The image of 𝑆 under the function 𝑓 is the subset of 𝐵 that consists of  the images of the
elements of 𝑆.

Denoted by:

𝑓(𝑆)  = { 𝑡 |  ∃𝑠 ∈ 𝑆  (𝑡 = 𝑓  (𝑠))  }.

or shortly {𝑓  𝑠  | 𝑠 ∈ 𝑆}.



example:

𝐴 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} 𝐵 = {1, 2, 3, 4} 𝑓(𝑎) = 2, 𝑓(𝑏) = 1, 𝑓(𝑐) = 4, 𝑓(𝑑) = 1, 𝑓(𝑒) = 1.

𝑆 = {𝑏, 𝑐, 𝑑}  ⊆ 𝐴

image of 𝑆 = {𝑏, 𝑐, 𝑑} is 𝑓(𝑆) = {1, 4}

One-to-One function (injective)
if f(a) = f(b) implies that a = b for all a and b in the domain  of f.

(every case is unique / no 2 f(a) are the same)
example:

onto function (surjective)
If and only if for  every element b ∈ B there is an element a ∈ A with f(a) = b.

(every f(a) links to f(b) )



example:

One-to-one correspondence (bijection)
if it is  both one-to-one and onto.

example:

exercise:

Determine if 𝑓(𝑥) = 𝑥 + 1 from set of ints to set of ints is 1 to 1

𝑓  (𝑎)  = (𝑎 + 1)    𝑓  (𝑏)  = (𝑏) + 1



𝑎 + 1 = 𝑏 + 1

a = b + 1 - 1

a = b

∴ 𝑓  (𝑥)  is one−to−one

Determine if 𝑓(𝑥) = 𝑥2 from set of ints to set of ints is 1 to 1

𝑓  (𝑎)  = 𝑎2   𝑓  (𝑏)  = 𝑏2

𝑎2 = 𝑏2

±𝑎 = ±𝑏

𝑎 may be not equal 𝑏

∴ 𝑓  𝑥  is NOT one−to−one

determine if f(x) = (2x-1)/3 is onto

f(x) = y

(2x-1)/3 = y

2x-1 = 3y

2x = 3y+1

x = (3y+1)/2

f(x) =y

(2x -1)/3 = y

2 ((3y+1-1)/2)/3 = y

(3y+1-1)/3 = y

3y/3 = y

y = y

∴ 𝑓  𝑥  is onto



Inverse Functions
f = one-to-one correspondence from the set A to the set B.

The  inverse function of f= function that assigns to an element b  belonging to B the unique
element a in A.

basically

𝑓(𝑎)  =  𝑏

𝑓−1  (𝑏)   = 𝑎

A one-to-one correspondence is called invertible because we can  define an inverse of this
function.

A function is not invertible if it is  not a one-to-one correspondence, because the inverse of
such a

function does not exist.

Example:
f =function from  {𝑎, 𝑏, 𝑐}  to { 1 , 2, 3}

𝑓(𝑎)  =  2, 𝑓(𝑏)  =  3,    𝑓(𝑐)  =  1

Is  𝑓 invertible,  and  if  it  is,  what  is  its  inverse?

𝑓 is invertible because it is a one-to-one correspondence.

𝑓−1(1) = 𝑐,  𝑓−1(2) = 𝑎,  and  𝑓−1(3) = 𝑏



Composition of the Functions f and g
g = function from the set 𝐴 to the set 𝐵

f = function from the set 𝐵 to the set 𝐶

The composition of the functions f and g,  denoted by 𝑓 ∘ g, is defined by (𝑓 ∘ g) 𝑎 = (𝑓 g (𝑎)).

Note: the composition f ∘ g cannot be defined unless the range of g is  a subset of the
domain of f .

Example:
g = function from the set {𝑎 , 𝑏, 𝑐} to itself

g(a) = b,  g(b) = c, and g(c) = a.

f = function from the set {𝑎 , 𝑏 , 𝑐} to  the set { 1 , 2 , 3 }

f(a) = 3 , f(b) = 2 , and f(c) = 1

What is the composition of f and g, and what is the composition of g and f ?

1)The composition of f and g  (i.e., (f ∘ g)):  (f ∘g)(a) = 2,  (f ∘g)(b) = 1,  (f ∘g)(c) = 3

2)The  composition  of  g  and  f  (i.e.,  (g ∘ f))  cannot  be  defined because the range of f is
NOT a subset of the domain of g .

another example

f and g: functions from the set of integers to the set of  integers f(x) = 2x + 3 g(x) = 3x + 2

find the  composition of f and g and the composition of g and f ?



1)The composition of f and g  (i.e., (f ∘g))

(f ∘g)(x) = 𝑓  𝑔  𝑥  = 2  3𝑥 + 2  + 3 = 6𝑥 + 7

2)The composition of g and f  (i.e., (g ∘f))

(g ∘f)(x) = 𝑔  𝑓  𝑥  = 3  2𝑥 + 3  + 2 = 6𝑥 + 11

Graph of functions
𝑓 = function from 𝐴 to 𝐵.

The graph of the function 𝑓  is the set of ordered pairs {(𝑎, 𝑏)| 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵}.

example:

Some Important Functions
1. Floor function (𝒚 =  ⌊x⌋)

take a real number, and give the biggest integer that's smaller than that number
examples:
⌊2.5⌋ = 2
⌊-2.5⌋ = -3

2. Ceiling function (𝒚 =  ⌈x⌉)
take a real number, and give the smallest integer that's bigger than that number
examples:



Useful Properties

1. ⌊-x⌋ = - ⌈_x_⌉ 2. ⌈- _x_⌉ = - ⌊x⌋ 3. ⌊x + n⌋ = ⌊x⌋ + n 4. ⌈_x_ +n⌉ = ⌈_x_⌉ +n

examples:

Chapter 3
Relations

𝐴 and 𝐵 = sets

binary relation from 𝐴 to 𝐵 is a subset of 𝐴 × 𝐵. = a set 𝑅 of ordered pairs, where first
element is a and the 2nd element is b

We  use 𝑎 𝑅 𝑏 to  denote  that  (𝑎, 𝑏) ∈ 𝑅 , and  to denote that (𝑎, 𝑏) ∉ 𝑅.

we also say 𝑎 is said to be related to 𝑏 by 𝑅 when (𝑎, 𝑏) belongs to 𝑅

example

𝐴 = {0, 1 , 2}

𝐵 = {𝑎 , 𝑏}.

Roster notation = Roster form of set (denoted by R)
R = {(𝟎, 𝒂), (𝟎, 𝒃), (𝟏, 𝒂), (𝟐, 𝒃)} = a relation from 𝐴 to 𝐵

⌈2.5⌉ = 3
⌈-2.5⌉ = -2

1. ⌊.5⌋ = 0
2. ⌈-1.2⌉ = -1
3. ⌊0.3 + 2 ⌋ = ⌊0.3 ⌋ + 2 = 0+2 =2
4. ⌈1.1+ ⌈0.5⌉⌉ = ⌈1.1⌉+ ⌈0.5⌉ = 2 + 1 = 3

Relation: relationships  between  elements  of  sets
Relations are is just a subset of the Cartesian product of the sets.
Binary relations: sets of ordered pairs
The  most  direct  way  to  express  a  relationship  between elements of two sets is to
use ordered pairs made up of two related elements.



we can also denote them using the following

Functions as Relations
function f from a set 𝐴 to a set 𝐵 assigns exactly one element of 𝐵 to each element of 𝐴.

The graph of 𝑓 is the set of ordered pairs (𝑎 , 𝑏) such that 𝑏 = 𝑓(𝑎). (explain why)

Because the graph of 𝑓 is a subset of 𝐴 × 𝐵, is a relation from 𝐴 to 𝐵.

Relations on a Set
relation on the set 𝐴: a relation from 𝐴 to 𝐴

or a relation on a set 𝐴: a subset of 𝐴 × 𝐴.

The identity relation 𝐼𝐴 on a set 𝐴 is the set {𝑎, 𝑎  {𝑎 ∈ 𝐴}}

(we take element of a and b, that fit the criteria)

Example = 𝐴 =  {1, 2, 3}

𝐼𝐴 = {(1, 1) , (2, 2) ,  (3, 3)}

example:

𝐴 = set {1, 2, 3 , 4}.

Which ordered pairs are in the relation 𝑅 = {(𝑎 , 𝑏)|𝑎 divides 𝑏} --> (note: b/a not the other
way, also it could be 𝑎 = 𝑏 or 𝑎 > 𝑏 or 𝑎 < 𝑏)



solution = we need to find all the pairs where b/a is an int

{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (3,4)}

another example

𝐴 = {−1, 0, 1, 2}

Which ordered pairs are in the relations

𝑅1 = {(𝑎 , 𝑏)|𝑎 < 𝑏}

= { (−1, 0) ,  (−1, 1)  ,  (−1, 2) ,  (0, 1)  ,  (0, 2) ,  (1, 2) }

𝑅2 - {{a,b}|𝑎 > 𝑏 }

= {(0,-1), (1,0), (1,-1),(2,1), (2,0),(2,-1)}

𝑅3 - {{a,b}| 𝑎 = 𝑏}

= {(-1,-1), (0,0), (1,1), (2,2)}

𝑅4 - {{a,b}| 𝑎 = −𝑏}

= {(-1,1),(0,0),(1,-1)}

𝑅5 - {{a,b}| 𝑎 = 𝑏 or 𝑎 = −𝑏}

=   (−1, −1) ,  (0, 0),  (1, 1) ,  (2, 2) ,  (−1, 1) ,  (1, −1)

𝑅6 - {{a,b}| 0 ≤ 𝑎 + 𝑏 ≤ 1 }

= {  (−1, 1) ,  (−1, 2) ,  (0, 0) ,  (0, 1) ,  (1, −1) ,  (1, 0) ,  (2, −1)}

number of relations on set with n elements
because a relation on a set 𝐴 is simply a subset of 𝐴 × 𝐴.

we can determine the number of subsets on a finite set using the following

𝐴 × 𝐴 = A2 = n2

to determine the number of relations on set we use the following formula

2n2


