ملاحظة: المكثف بهدف لتلخيص اهم النقاط للرياضيات المتقطعة, بس ما بظمنلك تجيب العلامة الكاملة, رح تستفيد من هاظ ا المكثف لو درست المادة قبل تدرس هان, و انا مش مسؤول عن اي حد ما جاب العلامة الي بدو اياها

Chapter 1: Logic

Propositional Logic (Calculus): It deals with propositions (statements that are either true or false (but not both)).

Propositions are denoted by letters, often P and Q. True values are represented by T, and false values by F.

Propositions can be:

- 1. Atomic: Single proposition.
- 2. Compound: Multiple propositions linked by logical operators.

Truth Table

A truth table is a tool that lists all possible truth values of a logical statement, showcasing the effects of each logical operator and revealing the resulting truth value of the statement.

Logical Operators:

(will use q,p,r and as examples, but any letter works) **1.Negation:** Read as NOT P, and written as \$\neg\$ p, reverses the truth value of P

Ρ	¬Р
True	False
False	True

2.Conjunction: Read as Q and P, and written as QAP, is true if p and q are both true

Ρ	Q	$\mathbf{P} \wedge \mathbf{Q}$
True	True	True
True	False	False
False	True	False
False	False	False

3.Disjunction: read as P OR Q, written as $P \lor Q$, is only false if p and q are both false

Ρ	Q	$\mathbf{P} \lor \mathbf{Q}$
True	True	True
True	False	True

Ρ	Q	P V Q
False	True	True
False	False	False

4.Exclusive OR: read as P XOR Q, written as $P \oplus Q$, is true if either P or Q are True, but not both

Ρ	Q	$\mathbf{P}\oplus\mathbf{Q}$
True	True	False
True	False	True
False	True	True
False	False	False

5.Implication: read as P implies Q, written as $P \rightarrow Q$, is only false of P is true and Q is false,

Ρ	Q	$\textbf{P} \rightarrow \textbf{Q}$
True	True	True
True	False	False
False	True	True
False	False	True

6.Biconditional: read as P if and only if Q, written as $P \iff Q$. is only true if P and Q are the same value.

Р	Q	$\textbf{P}\leftrightarrow\textbf{Q}$
True	True	True
True	False	False
False	True	False
False	False	True

Exercise: Solve (P ^ Q) v ~R

Ρ	Q	R	(P ^ Q)	(P ^ Q) v ~R
Т	Т	Т	Т	Т
Т	Т	F	Т	Т
Т	F	Т	F	F
Т	F	F	F	Т
F	Т	Т	F	F
F	Т	F	F	Т

Р	Q	R	(P ^ Q)	(P ^ Q) v ~R
F	F	Т	F	F
F	F	F	F	Т

Components of Implication ($P \rightarrow Q$):

1. Converse:

- Original Statement: If it is raining, then it is cloudy. $(P \rightarrow Q)$
- Converse (Not the same): If it is cloudy, then it is raining. $(Q \rightarrow P)$

2. Inverse:

- Original Statement: If it is raining, then it is cloudy. $(P \rightarrow Q)$
- Inverse (Not the same): If it is not raining, then it is not cloudy. $(\neg P \rightarrow \neg Q)$

3. Contrapositive:

- Original Statement: If it is raining, then it is cloudy. $(P \rightarrow Q)$
- Contrapositive (Same): If it is not cloudy, then it is not raining. $(\neg Q \rightarrow \neg P)$

Logical Operator Precedence:

- 1. Negation (¬) Highest precedence.
- 2. Conjunction (AND, \wedge)
- 3. Disjunction (OR, ∨)
- 4. Conditional (\rightarrow)
- 5. **Biconditional (** \leftrightarrow **)** Lowest precedence.

If the operators are the same, priority goes from left to right.

Exercise: Assume P: T Q: F R:F, Find the value of: $PV(Q\land \neg R) \Leftrightarrow P$ $PV(Q\land \neg R) \Leftrightarrow P$

T∨(F∧¬F)⇔T

Tv(F∧T)⇔T

TvF⇔T

T⇔T T

Applications of Propositional Logic:

1. Translating logic expressions to English:

Examples:

I am hungry (p) if and only if (\leftrightarrow) I will eat (q) $P \leftrightarrow Q$

If (\rightarrow) it is snowing (p), then I will wear a coat (q) $P \rightarrow Q$

The store is not closed ¬P

2. Bit-wise operations

Binary system: Utilizes bits, each with two values (0 or 1), representing true (1) or false (0).

Boolean variables: variables that can only hold true or false values.

Logical Operator	Bit operator
-	NOT
\vee	OR
\wedge	AND
\oplus	XOR

- Bit string: it is a sequence of zero or more bits.
- String Length: number of bits in the Bit string

e.i: 101010011 is a bit string with length = 9

Logical Equivalence

Tautology: compound proposition that is always true (Ex: P \$\lor\$\$\neg\$P)

р	$\neg \mathbf{p}$	P ∨¬ P
t	f	t
f	t	t

Contradiction: compound proposition that is always false (Ex: $P \land \neg P$)

р	$\neg \mathbf{p}$	P ∧¬ P
t	f	f
f	t	f

Contingency: compound proposition that is either true or false (Ex: $P \rightarrow Q$)

Ρ	Q	(P ∨ Q)	\neg (P \lor Q)	($\neg \mathbf{P} \land \neg \mathbf{Q}$)	\neg (P \lor Q) \iff \neg P \land \neg Q)
Т	Т	Т	F	F	Т
Т	F	Т	F	F	Т
F	Т	Т	F	F	Т
F	F	F	Т	Т	Т

Exercise: show that \neg (P \lor Q) = (\neg P $\land \neg$ Q) using truth table

Equivalence rules:

Equivalence rule	Name
P ^ T = P P v F = P	Identity
P ^ F = F P v T = T	Domination
P ^ P = P P v P = P	Idempotent
¬ P v P = T ¬ P ^ P = F	Negation
~(~P) = P	Double Negation
P ^ Q = Q ^ P P v Q = Q v P	Commutative
(P v Q) v R = P v (Q v R) (P ^ Q) ^ R = P ^ (Q ^ R)	Associative
P v (Q ^ R) = (P v Q) ^ (P v R) P ^ (Q v R) = (P ^ Q) v (P ^ R)	Distributive
~(P v Q) = ~P ^ ~Q ~(P ^ Q) = ~P v ~Q	De Morgan's Law
P v (P ^ Q) = P P ^ (P v Q) = P	Absorption

Implications Logical Rules

note: there are others, these 2 are the most important ones

Statement 1	Statement 1
$P \rightarrow Q$	~P v Q
$P \to Q$	~Q →~P

Bicondintional Rules

note: there are others, this 1 is the most important ones

Statement 1	Statement 2	
$P \iff Q$	$(P \rightarrow Q) \land (Q \rightarrow P)$	

Example 1: Show that the following is a tautology.

- \neg (P \land Q) \rightarrow (P \lor Q)
- \neg (P \land Q) = (\neg P \lor -Q)

$$(\neg \mathsf{P} \lor \mathsf{-Q}) \rightarrow (\mathsf{P} \lor \mathsf{Q}) = (\neg \mathsf{P} \lor \mathsf{P}) \lor (\neg \mathsf{Q} \lor \mathsf{Q})$$
 (

 $T \lor T = T$

Example 2: Show that the following is logically equivalent.

 $\neg (\mathsf{P} \lor (\neg \mathsf{P} \land \mathsf{Q}) = (\neg \mathsf{P} \land \neg \mathsf{Q})$ $(\neg \mathsf{P} \land \neg (\neg \mathsf{P} \land \mathsf{Q})$ $(\neg \mathsf{P} \land (\neg \neg \mathsf{P} \lor \neg \mathsf{Q})$ $(\neg \mathsf{P} \land \mathsf{P}) \lor (\neg \mathsf{P} \land \neg \mathsf{Q})$ $\mathsf{F} \lor (\neg \mathsf{P} \land \neg \mathsf{Q})$ $(\neg \mathsf{P} \land \neg \mathsf{Q})$

PREDICATES AND QUANTIFIERS

predicates: statements that are not propositions

examples:

Ex2: Q(x, y): x= y+3

Ex3: R(X,Y,Z): X + Y = Z.

QUANTIFIERS:

1. Universal quantifier (\forall), for all

* P(x) is true for all values of x in the universe of discourse (domain). $\rightarrow \forall x p(x) * \forall x p(x)$ is read as: "for all x p(x) ", " for every x p(x)"

examples:

What is the truth value $\forall x p(x)$, where p(x) is (x < 10). The domain is all positive integers not exceeding 4?

Sol : $\forall x \ p(x) = P(1) \ ^p(2) \ ^p(3) \ ^p(4)$ T ^ T ^ T ^ F = F

 Translate the following statement into English language: ∀x Q(x), where Q(x) is "x has two parents" and the domain is all people. Sol: every person has two parents

2. Existential Quantifier (\exists), for some

* P(x) is true if an element (x) is true). $\rightarrow \exists p(x) * \exists p(x)$) is read as: "there is a x such that p(x) "," there is at least one x such that p(x)"

Example:

what is the truth value of $\exists x p(x)$, where p(x) is "x * x > 10" and the domain is all positive integers

not exceeding 4?

 $\exists x p(x) = P(1) \lor p(2) \lor p(3) \lor p(4) = True$, since p(4) is True

Binding Variable

A variable in a predicate might be:

- 1. Free: p(x): x has a cat
- 2. Bound to either
 - 1. to a value: p(Ali): Ali has a cat. (x is bound to ali)
 - 2. To a quantifier: $\forall x \exists y \text{ like}(x, y)$, x and y are bound to $\forall \exists$ respectively

Negation

to negate we first change the Quantifier, then negate the inside statement example:

There is a student in the class who has taken Calculus. $\exists x p(x)$

becomes: Every student in the class has not taken calculus. $\neg \exists x P(x) = \forall x \neg P(x)$

NESTED QUANTIFIER

tldr: more than one expression

example

 $\forall x(\forall y (x + y = y + x))$ is true, for every values x and y x + y = y + x Domain: Real Numbers. Note: $\forall x(\forall y (x + y = y + x))$ is the same as $\forall x \forall y x + y = y + x$ (parentheses are optional)

to negate a nested quantifier we negate each quantifier then move to the other one, negating it as well

example: $\forall x \forall y \exists z (P(x,y) \land Q(y,z)) \rightarrow \exists x \forall y \exists z (P(x,y) \land Q(y,z)) \rightarrow \exists x \exists y \neg \exists z (P(x,y) \land Q(y,z)) \rightarrow \exists x \exists y \forall z (P(x,y) \land Q(y,z)) \rightarrow \exists x \exists y \forall z (P(x,y) \lor Q(y,z))$

Chapter 2

Sets

An unordered collection of objects.

The objects in a set are called the elements, or members, of the set. A set is said to contain its elements

 $S = \{a, b, c, d\}$

We write $(a \in S)$ to denote that *a* is an element of the set *S*. The notation $e \notin S$ denotes that *e* is not an element of the set *S*.

Another way to describe a set is to use set builder notation

The set *O* of odd positive integers less than 10 can be expressed by $O = \{1, 3, 5, 7, 9\}$.

OR

 $O = \{x \mid x \text{ is an odd positive integer } <10\} / O = \{x \in Z^+ \mid x \text{ is odd and } x < 10\}$

List of Unique sets

Letter	Represents
Ν	Natural Numbers (0-infinity)
Z	All integers
Z ⁺	All Positive integers
Q	All Rational Numbers
R	Real Numbers
R ⁺	Positive Real Numbrers
С	Complex Numbers

Interval Notation

- 1. Closed interval [a, b]
- 2. Open interval (a, b)

Interval	Implication
[a, b]	$\{x \mid a \leq x \leq b\}$
[a, b)	$\{x \mid a \leq x \leq b\}$
(a, b]	$\{x \mid a {<} x {\leq} b\}$
(a, b)	$\{x \mid a < x < b\}$

If A and B are sets, then A and B are equal if and only if

 $\forall x \ (x \in A \leftrightarrow x \in B)$. We write A = B, if A and B are equal sets

The sets {1, 3, 5} and {3, 5, 1} are equal, because they have the same elements.

{1,3,3,5,5,5} is the same as the set {1,3,5} because they have the same elements

Empty Set/ Null set

A set that has no elements, is denoted by \emptyset or by $\{ \}$.

Cardinality

The cardinality is the number of distinct elements in S. The cardinality of S is denoted by |S|.

examples: $A = \{1, 2, 3, 7, 9\}$ |A| = 5 $\emptyset = \{\}$ $|\emptyset| = 0$ $A = \{1, 2, 3, \{2,3\}, 9\}$ $|A| = 5 (\{2,3\} \text{ is counted as one})$ $\{\emptyset\} = \{\{\}\}$ $|\{\emptyset\}| = 1$

Infinite

A set is said to be infinite if it is not finite. The set of positive integers is infinite.

example: Z = {0,1,2,3.....}

Subset

The set A is said to be a subset of B if and only if every element of A is also an element of B

We use the notation $A \subseteq B$ to indicate that A is a subset of the set B.

 $A \subseteq B \iff \forall x (x \in A \rightarrow x \in B)$

 $(A \subseteq B) \equiv (B \supseteq A)$

For the set S

1. Ø ⊆ S 2. S ⊆ S

To show that two sets A and B are equal, show that $A \subseteq B$ and $B \subseteq A$.

Proper Subset

The set *A* is a subset of the set *B* but that $A \neq B$, we write $A \subset B$

and say that *A* is a **proper subset** of *B*.

 $A \subset B \iff (\forall x \ x \in A \rightarrow x \in B) \ A \exists x (x \in B \ A x \notin A)$

Venn Diagram

A = 1,2,3,4,7 (black)

B = 0,3,5,7,9 (purple)

C = 1,2 (red)

Power Set

The set of all subsets.

If the set is *S*. The power set of *S* is denoted by P(S). The number of elements in the power set is 2^{S}

example:

 $S = \{1,2,3\} = \{\emptyset, 1, 2, 3, 1,2, 1,3, 2,3, 1,2,3\}$

 $P(S) = 2^S = 2^3 = 8$

The power set of an empty set is

 $p(\emptyset) = \{\emptyset\}$

The power set of the set {Ø} is

 $P(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}$

The ordered *n*-tuple

The ordered collection that has a1 as its first element, a2 as its second element, ..., and an as its *n*th element. (a1, a2,....an)

ordered 2-tuples are called ordered pairs (e.g., the ordered pairs (a, b))

Cartesian Products

the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$ denoted by $A \times B$

Example:

$$A = \{1,2\}, B = \{a, b, c\}$$

 $A \times B = (1, a)$, (1, b), (1, c), (2, a), (2, b), (2, c).

 $|A \times B| = |A| \times |B| = |2 \times 3| = |6|$

The Cartesian product of more than two sets.

A X B x C, where A = {0, 1 } B = {1, 2}, and C = {0, 1, 2

 $A \times B \times C = \{(0,1,0), (0,1,1), (0,1,2), (0,2,0), (0,2,1), (0,2,2$

 $(1,1,0),(1,1,1),(1,1,2),(1,2,0),(1,2,1),(1,2,2)\}.$

Set Operations

Unions

The set that contains elements that are either in A or in B, or in both.

 $A \cup B= \{x \mid x \in A \lor x \in B\}$

Example:

The union of {1, 3, 5} and {1, 2, 3} is {1, 2, 3, 5}

Unions Can Be Generalized

using the notation:

$$A_1 \cup A_2 \cup \dots \cup A_n = \bigcup_{i=1}^n A_i$$

Intersection

The set that contains those elements that are in both A and B.

 $A\cap B{=}\{x \mid \! x \in A \land x \in B\}$

 $A \cap B$ is shaded.

The intersection of $\{1, 3, 5\}$ and $\{1, 2, 3\}$ is set $\{1, 3\}$

Two sets are called disjoint if their intersection is the empty set.

 $A\cap B=\emptyset$

Intersections Can Be Generalized

using the notation:

$$A_1 \cap A_2 \cap \dots \cap A_n = \bigcap_{i=1}^n A_i$$

Difference

The set containing elements that are in A but not in B

A - B={x $|x \in A \land x \notin B$ }

A = {1,3,5} B= {1,2,3}

A - B = {5}

Complement

An element x belongs to U (a universal set) if and only if $x \notin A$

 $U = \{1,2,3,4,5\}$, $A = \{1,3\}$

Аҧ = {2,4,5}

Set Identities

TABLE Set Identities.		
Identity	Name	
$A \cap U = A$ $A \cup \emptyset = A$	Identity laws	
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws	
$A \cup A = A$ $A \cap A = A$	Idempotent laws	
$\overline{(\overline{A})} = A$	Complementation law	
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws	

TABLE Set Identities.	
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws
$\overline{\overline{A \cap B}} = \overline{A} \cup \overline{B}$ $\overline{\overline{A \cup B}} = \overline{A} \cap \overline{B}$	De Morgan's laws
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws

(same as the ones in logic)

Exercise:

Prove that $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

Can be solved 2 ways

$\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}.$

$$\begin{aligned} x \in \overline{A \cap B} \\ x \not\in A \cap B \\ \neg((x \in A) \land (x \in B)) \\ \neg(x \in A) \lor \neg(x \in B) \\ x \not\in A \lor x \not\in B \\ x \in \overline{A} \lor x \in \overline{B} \\ x \in \overline{A} \cup \overline{B} \end{aligned}$$

by assumption defn. of complement defn. of intersection 1st De Morgan Law for Prop Logic defn. of negation defn. of complement defn. of union

OR

 $\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}.$

$$\begin{array}{ll} x\in\overline{A}\cup\overline{B} & \text{by assumption} \\ (x\in\overline{A})\vee(x\in\overline{B}) & \text{defn. of union} \\ (x\not\in A)\vee(x\not\in B) & \text{defn. of complement} \\ \neg(x\in A)\vee\neg(x\in B) & \text{defn. of negation} \\ \neg((x\in A)\wedge(x\in B)) & \text{by 1st De Morgan Law for Prop Logic} \\ \neg(x\in A\cap B) & \text{defn. of intersection} \\ x\in\overline{A\cap B} & \text{defn. of complement} \end{array}$$

We can also solve them using set builder notations.

Function

A and B = nonempty sets

function f from A to B is an assignment of exactly one element of B to each element of A.

We write f(a) = b if b is the unique element of B assigned by the function f to the element a of A.

If f is a function from A to B, we write $f: A \rightarrow B$

example:

Assignment of grades in a discrete mathematics class.

The function f maps A to B.

Domain: A

Co-Domain: B

f a = b

b is the image of a

a is a preimage of b

The range, or image, of f is the set of all images of elements of A.

Domain = $\{a, b, c, d, e\}$ Co-Domain = $\{1,2,3,4,5,6,7\}$ Range = $\{1,3,4,5,7\}$

Let *f*1 and *f*2 be functions from *A* to R. Then *f*1 + *f*2 and *f*1 *f*2 are also functions from *A* to R defined for all $x \in A$ by

$$f1 + f2(x) = f1(x) + f2(x), (f1f2)(x) = f1(x) f2(x).$$

example:

 $f1(x) = x^2$ and $f2(x) = x - x^2$.

What are the functions f1 + f2 and f1f2?

 $(f1+f2)(x)=f1(x)+f2(x)=x^2+(x-x^2)=x$

 $(f1f2)(x) = f1(x)f2(x) = x^{2}(x-x^{2}) = x^{3}-x^{4}.$

f = function from A to B.

$$S =$$
subset of A .

The image of S under the function f is the subset of B that consists of the images of the elements of S.

Denoted by:

 $f(S) = \{ t \mid \exists s \in S \ (t = f \ (s)) \}.$

or shortly $\{f \ s \mid s \in S\}$.

example:

 $A = \{a, b, c, d, e\} B = \{1, 2, 3, 4\} f(a) = 2, f(b) = 1, f(c) = 4, f(d) = 1, f(e) = 1.$ $S = \{b, c, d\} \subseteq A$ image of $S = \{b, c, d\}$ is $f(S) = \{1, 4\}$

One-to-One function (injective)

if f(a) = f(b) implies that a = b for all a and b in the domain of f.

(every case is unique / no 2 f(a) are the same) example:

onto function (surjective)

If and only if for every element $b \in B$ there is an element $a \in A$ with f(a) = b.

(every f(a) links to f(b))

example:

One-to-one correspondence (bijection)

if it is both one-to-one and onto.

example:

$$\begin{array}{c} a \\ b \\ c \\ d \\ e \\ \end{array} \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ e \\ \end{array} \begin{array}{c} f(a) = 1 \\ f(b) = 3 \\ f(c) = 5 \\ f(c) = 5 \\ f(d) = 2 \\ f(e) = 4 \end{array} \begin{array}{c} Co-Domain = \{1,2,3,4,5\} \\ Range = \{1,2,3,4,5\} \end{array}$$

exercise:

Determine if f(x) = x + 1 from set of ints to set of ints is 1 to 1

f(a) = (a + 1) f(b) = (b) + 1

a + 1 = b + 1 a = b + 1 - 1 a = b $\therefore f(x) \text{ is one-to-one}$

Determine if $f(x) = x^2$ from set of ints to set of ints is 1 to 1

$$f(a) = a^{2} f(b) = b^{2}$$

$$a^{2} = b^{2}$$

$$\pm a = \pm b$$

$$a \text{ may be not equal } b$$

$$\therefore f x \text{ is NOT one-to-one}$$

determine if f(x) = (2x-1)/3 is onto f(x) = y (2x-1)/3 = y 2x-1 = 3y 2x = 3y+1 x = (3y+1)/2 f(x) = y (2x - 1)/3 = y 2 ((3y+1-1)/2)/3 = y (3y+1-1)/3 = y 3y/3 = y y = y $\therefore f x$ is onto

Inverse Functions

f = one-to-one correspondence from the set A to the set B.

The inverse function of f= function that assigns to an element b belonging to B the unique element a in A.

basically

f(a) = b

 $f^{-1}(b) = a$

A one-to-one correspondence is called invertible because we can define an inverse of this function.

A function is not invertible if it is not a one-to-one correspondence, because the inverse of such a

function does not exist.

Example:

f = function from $\{a, b, c\}$ to $\{1, 2, 3\}$

f(a) = 2, f(b) = 3, f(c) = 1

Is f invertible, and if it is, what is its inverse?

f is invertible because it is a one-to-one correspondence.

 $f^{-1}(1) = c$, $f^{-1}(2) = a$, and $f^{-1}(3) = b$

Composition of the Functions f and g

g = function from the set A to the set B

f = function from the set B to the set C

The composition of the functions f and g, denoted by $f \circ g$, is defined by $(f \circ g) a = (f g (a))$.

Note: the composition $f \circ g$ cannot be defined unless the range of g is a subset of the domain of f.

Example:

g = function from the set $\{a, b, c\}$ to itself

g(a) = b, g(b) = c, and g(c) = a.

f = function from the set $\{a, b, c\}$ to the set $\{1, 2, 3\}$

f(a) = 3, f(b) = 2, and f(c) = 1

What is the composition of f and g, and what is the composition of g and f?

1) The composition of f and g (i.e., $(f \circ g)$): $(f \circ g)(a) = 2$, $(f \circ g)(b) = 1$, $(f \circ g)(c) = 3$

2)The composition of g and f (i.e., $(g \circ f)$) cannot be defined because the range of f is NOT a subset of the domain of g.

another example

f and g: functions from the set of integers to the set of integers f(x) = 2x + 3 g(x) = 3x + 2

find the composition of f and g and the composition of g and f?

1)The composition of f and g (i.e., (f og))

 $(f \circ g)(x) = f g x = 2 3x + 2 + 3 = 6x + 7$

2)The composition of g and f (i.e., (g of))

 $(g \circ f)(x) = g f x = 3 2x + 3 + 2 = 6x + 11$

Graph of functions

f = function from A to B.

The graph of the function f is the set of ordered pairs $\{(a, b) | a \in A \text{ and } b \in B\}$.

example:

The graph of $f(x) = x^2$ from Z to Z.

Some Important Functions

 Floor function (y = [x]) take a real number, and give the biggest integer that's smaller than that number examples:

[2.5] = 2

2. Ceiling function (y = [x])

take a real number, and give the smallest integer that's bigger than that number examples:

[2.5] = 3 [-2.5] = -2

Useful Properties

1. $[-x] = -[x_2] 2$. $[-x_2] = -[x] 3$. [x + n] = [x] + n 4. $[x_2 + n] = [x_2] + n$

examples:

- 1. [.5] = 0
- 2. [-1.2] = -1
- 3. [0.3 + 2] = [0.3] + 2 = 0+2 = 2
- 4. [1.1+ [0.5]] = [1.1]+ [0.5] = 2 + 1 = 3

Chapter 3

Relations

- Relation: relationships between elements of sets
- Relations are is just a subset of the Cartesian product of the sets.
- · Binary relations: sets of ordered pairs
- The most direct way to express a relationship between elements of two sets is to use ordered pairs made up of two related elements.

A and B = sets

binary relation from *A* to *B* is a subset of $A \times B$. = a set *R* of ordered pairs, where first element is a and the 2nd element is b

We use $a \ R \ b$ to denote that $(a, b) \in R$, and

we also say a is said to be related to b by R when (a, b) belongs to R

example

 $A = \{0, 1, 2\}$

 $B=\{a\ ,\,b\}.$

Roster notation = Roster form of set (denoted by R) R = {(0, a), (0, b), (1, a), (2, b)} = a relation from *A* to *B*

to denote that $(a, b) \notin R$.

we can also denote them using the following

Functions as Relations

function f from a set A to a set B assigns exactly one element of B to each element of A.

The graph of *f* is the set of ordered pairs (a, b) such that b = f(a). (explain why)

Because the graph of f is a subset of $A \times B$, is a relation from A to B.

Relations on a Set

relation on the set A: a relation from A to A

or a relation on a set A: a subset of $A \times A$.

The identity relation I_A on a set A is the set $\{a, a \ \{a \in A\}\}$

(we take element of a and b, that fit the criteria)

Example = $A = \{1, 2, 3\}$

 $I_A = \{(1, 1), (2, 2), (3, 3)\}$

example:

 $A = set \{1, 2, 3, 4\}.$

Which ordered pairs are in the relation $R = \{(a, b) | a \text{ divides } b\} \rightarrow (\text{note: b/a not the other way, also it could be } a = b \text{ or } a > b \text{ or } a < b\}$

solution = we need to find all the pairs where b/a is an int

 $\{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (3,4)\}$

another example

 $A = \{-1, 0, 1, 2\}$

Which ordered pairs are in the relations

```
R_{1} = \{(a, b) | a < b\}
= \{(-1, 0), (-1, 1), (-1, 2), (0, 1), (0, 2), (1, 2)\}
R_{2} - \{\{a,b\} | a > b\}
= \{(0,-1), (1,0), (1,-1), (2,1), (2,0), (2,-1)\}
R_{3} - \{\{a,b\} | a = b\}
= \{(-1,-1), (0,0), (1,1), (2,2)\}
R_{4} - \{\{a,b\} | a = -b\}
= \{(-1,1), (0,0), (1,-1)\}
R_{5} - \{\{a,b\} | a = b \text{ or } a = -b\}
= (-1, -1), (0, 0), (1, 1), (2, 2), (-1, 1), (1, -1)
R_{6} - \{\{a,b\} | 0 \le a + b \le 1\}
= \{(-1, 1), (-1, 2), (0, 0), (0, 1), (1, -1), (1, 0), (2, -1)\}
```

number of relations on set with n elements

because a relation on a set A is simply a subset of $A \times A$.

we can determine the number of subsets on a finite set using the following

$$A \times A = A^2 = n^2$$

to determine the number of relations on set we use the following formula

2^{n²}