Foundation of Complex Numbers

1 Introduction and Historical Context

omplex numbers are a principal extension of our classical number system, intro-
ducing a new dimension to numerical understanding and calculations. Initially
arising from mathematical necessity—specifically, the need to find solutions to
equations such as 22 + 1 = 0, which have no real solutions—complex numbers
have evolved to become a linchpin of modern mathematics, engineering, and
physics.

1.1 The Birth of Complex Numbers

The early history of complex numbers involved both initial skepticism and grad-
ual advancements. The concept of square roots of negative numbers first ap-
peared in the 16th century through Gerolamo Cardano’s work on solving cubic
equations. In his Ars Magna (1545), Cardano acknowledged solutions involving
these “imaginary” quantities, although their practical or geometric significance
was not yet fully understood. In the following decades, Rafael Bombelli system-
atically developed rules of arithmetic for these numbers, laying the groundwork
for their algebraic manipulation.

René Descartes coined the term ”imaginary” for these numbers in the 17th
century, a label that reflected the challenges mathematicians faced in relating
them to physical or geometric concepts at the time. However, the necessity
of complex numbers became obvious with the emergence of the Fundamental
Theorem of Algebra, which states that every nonconstant polynomial equation
has as many roots as its degree when considered over the complex numbers.

By the 18th century, the concept of complex numbers had become well-
established, largely due to Leonhard Euler’s significant role in popularizing both
the imaginary unit. ¢ and the exponential form of complex numbers. Caspar
Wessel and Jean-Robert Argand later gave complex numbers a clear geometric
interpretation by plotting them on the Euclidean plane—the so-called Argand
plane or Argand diagram.

The subsequent centuries saw complex numbers become foundational in
mathematics, physics, engineering, and, more recently, fields like quantum com-
puting and computer graphics.



Year Mathematician Contribution

1545 Gerolamo Cardano First use of complex numbers in solving cubics

1572 Rafael Bombelli Developed arithmetic rules for complex numbers

1637 René Descartes Termed them ”imaginary” numbers

1748 Leonhard Euler Introduced use of i, Euler’s formula, exponential form

1797 Caspar Wessel Geometric interpretation (complex plane)

1806 | Jean-Robert Argand Formalized Argand diagram

1831 | Carl Friedrich Gauss | Proved Fundamental Theorem of Algebra; term ”complex number”

Table 1: Timeline of Key Contributions

2 The Hierarchy of Number Systems and Moti-
vation for Complex Numbers

The real number system itself grew out of the limitations of earlier systems—integers,
rationals, irrationals—each resolving mathematical gaps that preceded it. Yet
even the real numbers leave certain equations, like 22 4+ 9 = 0, unsolvable. The
drive to overcome this led naturally to complex numbers.

2.1 Relationships Between Number Sets

e Natural Numbers (N): Counting numbers {1,2,3,...}.

e Whole Numbers: Natural numbers plus zero {0,1,2,3,...}.

e Integers (Z):

{0,£1, £2, +3}.

All positive and negative whole numbers, including zero

e Rational Numbers (Q): Numbers expressible as %,p, q€Z,q#0.

e Irrational Numbers (Q%): Numbers not expressible as rational num-
bers. For example, 7, /2, etc.

e Real Numbers (R): Combination of rationals and irrationals.

e Complex Numbers (C): Numbers of the form a+ib,a,b € R,i = /—1.

Complex numbers thus arise as a natural and necessary extension of real num-
bers, removing algebraic barriers, and enabling a full solution set for every
polynomial.

3 The Imaginary Unit, Real and Imaginary Parts

3.1 Definition of the Imaginary Unit

The imaginary unit is denoted by 7 and is defined by the equation:

i=+v—1




Table 2: Values of Powers of ¢

This definition allows us to give meaning to the square roots of negative num-

bers. For example:
V=36 = V36 x V=1 = 6i

. The properties of powers of ¢ are cyclic and foundational.

3.2 Notation and General Form

A complex number is an expression:
z=a+1b

where a and b are real numbers, witha termed the real part and b the imaginary
part.
Re(z)

Im(z) =b

Examples:

1. z =3 — 44, then Re(z) = 3 and Im(z) = —4.
2. z =17, then Re(z) = 7 and Im(z) = 0.

3. z = —bi, then Re(z) = 0 and Im(z) = —5.

4 Algebraic Form and Representation on the
Argand Plane

4.1 Algebraic (Rectangular or Cartesian) Form

The algebraic form writes a complex number as z = a + tb treating it much like
a two-dimensional vector in the plane. This facilitates operations like addition
and subtraction using component-wise arithmetic.



Figure 1: Complex number z = a + ib on the Argand plane, with modulus |z|
and argument 6

Quadrant Signs Description
I a > 0,b>0 | Both real and imaginary parts positive
1I a<0,b>0 Real negative, imaginary positive
III a<0,b<0 Both negative
v a>0,b<0 Real positive, imaginary negative

Table 3: Quadrants in the Argand Plane

4.2 The Argand Plane (Complex Plane)

Geometric representation is a profound aspect of complex numbers. By plotting
the real part along the horizontal axis and the imaginary part along the vertical
axis, any complex number z = a + ib is represented as the point (a,bd) in the
Argand diagram.

This structure (fig. 1) directly aids visualization and interpretation of arith-
metic and geometry with complex numbers.

5 Basic Operations with Complex Numbers

Operations with complex numbers parallel those on real numbers, but with
additional considerations due to the involvement of 7.

5.1 Addition and Subtraction

For zy = a1 + by and zo = ag + ibs,

e Addition:
21+ 20 = (a1 + az) +i(by + b2)

e Subtraction:
21— 29 = (a1 — GQ) + ’L(bl — b2)



Example: Given z; =2+ 3i and 25 = 4 — 2i. Then,
21+20=24+4)+i(3-2)=6+1

and
zZ1+22=02-4)+i(83—(-2)) =—-2+5i

. Both operations are performed component-wise, treating the real and imagi-
nary parts separately.

5.2 Multiplication
For 2, = aj + iby and 2o = ag + ibs,
2122 = (a1 + ib1)(ag + tbs) = (a1a9 — bi1be) + i(a1be + a2by)
Example:
(3+21)(1+47) = [(3)(1)—(2)(4)]+[(3)(4)—(1)(2))i = (3—8)+(1242)i = —5+144

Multiplication geometrically combines scaling and rotation (see polar form).

5.3 Division
To divide z; by 29,
Z21 + by (a1 + ’ibl)(ag - ibg) _ (alag + blbg) + i(b1a2 — bzal)

zZ2 - as —+ Zbg - (a2 —+ ibQ)(CLQ — ’ng) CL% =+ b%

Example: For z; =4+ 5i and 29 = 2 — 31,

This uses the complex conjugate to rationalize the denominator and isolate the
result in standard form.

6 Conjugate and Modulus of a Complex Num-
ber

6.1 Complex Conjugate
For any z = a + b, the conjugate is:
Z=a+ib=a—1id

This operation geometrically reflects the point z over the real axis in the
Argand plane. The product 2z = a® + b? is always real and non-negative.

2 _A+5i _ (A450)(2+3) _ 8+12i+10i+15° _ 842215 _ -T+42% _ -7 22,
= = = = = = — —1
z 2-3i  (2—30)(2+3i) 22 — 32 14— (-9) 13 13 13



6.1.1 Properties

o 21 t2=721 7%

e A complex number is real iff z = z

6.1.2 Example
If 2 =2+ 3i, then Z =2 — 3i.

6.2 Modulus

The modulus (or absolute value) of a complex number z = a + ib is given by

|z] = Va? + b?

. This is the Euclidean distance of the point z from the origin in the Argand
plane.
Example For z = 3 — 41,

2] = /32 4+ (—4)2=V9+16 = V25 =5

Some important properties of modulus:

e |z >0,and |z|=0iff z=0

o [2120] = |21] |22]
o 2] = |z]
. |%\:%for227é0.

7 Polar Form of a Complex Number and Euler’s
Formula

7.1 Polar Coordinates

Any complex number z = a + ib, can be uniquely represented in polar form:
z =r(cosf + isinf)

where

e r =|z| = Va? + b? is the modulus,



e 0 =arg(z) = tan~'(2) is the argument (angle from the positive real axis).

Example: For z = 1+ i/3, then

e r= /1P +(vB)2 = VIF3=Vi=2

o 0= tan_l(?) = tan~'(v/3) = tan~! (tan 60° = 60° = %)

e z=2(cos § +isinZ%)

Conversion formulas:
e From rectangular to polar: r = Va2 + b2, 6 = tan_l(g)

e From polar to rectangular: a = rcosf and b = rsinf

7.2 Euler’s Formula
A landmark result links the polar and exponential form of complex numbers:

e = cos + isinf

Thus,
z=re

This compact and elegant representation simplifies multiplication, division,
and the finding of powers and roots:

e Multiplication: z;zo = ryreet(f1102)
e Division: & = I1e(01—-62)
zZ2 T2
e Powers: z" = r"ei™?
e Roots: {/z = {/re!0+2km)/n 1o —01,2,n — 1

This is indispensable for trigonometry, oscillations, electrical engineering, and
quantum mechanics.

8 Applications of Complex Numbers

Complex numbers, far from being “imaginary,” have a wealth of applications in
both pure and applied sciences.



8.1

8.2

8.3

8.4

8.5

In Mathematics

Polynomial Roots: By the Fundamental Theorem of Algebra, every
polynomial equation of degree n possesses complex roots (counting multi-
plicities), guaranteeing solution completeness.

Geometry: Complex numbers provide elegant solutions to geometric
problems, such as describing rotations, transformations, and loci (e.g.,
the locus |z| = 1 is the unit circle).

Trigonometry and De Moivre’s Theorem: Facilitate calculation of
multiple-angle identities and roots of unity.

In Engineering

Electrical Engineering: Alternating current (AC) circuit analysis relies
on representing voltages, currents, and impedances as complex numbers,
simplifying calculations involving sinusoidal signals via phasor notation.

Signal Processing: Fourier transforms use complex exponentials to de-
compose signals into frequency components.

Control Systems: Poles and zeros are plotted on the complex plane for
stability analysis.

In Physics

Quantum Mechanics: Wave functions are complex-valued, and proba-
bility amplitudes derive from the square modulus of complex numbers.

Electromagnetic Theory: Use of complex notation simplifies Maxwell’s
equations for oscillating fields.

In Computer Graphics and Computing

Rotations and Transformations: Complex multiplication implements
2D geometric rotations efficiently in computer graphics and animation.

Fractals and Art: The beautiful Mandelbrot and Julia sets result from
iterating functions on the complex plane.

Signal Processing and Data Visualizations: Spectral and spatial
transformations use the full power of complex arithmetic.

Other Real-Life Applications

Design and Analysis: Used in mechanical/civil engineering for stress
analysis, vibration, and resonance.

Control Theory: Complex variables are vital for representing feedback
and dynamic response.



9 Worked Examples and Solved Problems
Example 1: (Addition and Subtraction) Given z; = 3+4i and 25 = 1 —21,
o 21 +20=(3+1)+ A+ (—-2)i=4+2
oz —zm=0B-1)+A—(~2)i=2+6i
Example 2: (Multiplication) Given z; =2+ i and 25 = —4 — 54,

2129 = (244)(—4—5i) = 2(—4—5i)+i(—4—5i) = —8—10i—4i—5i> = —8—14i+5 = —3—14i

Example 3: (Division) Divide z; =5+ 67 by z2 = 2 — 3i.

z1 5+6t H5+6¢ 243 10+15i+12i+18i2710+27i—187—8+27i -8 27,

= = X = = = - 4=
zo 2—-31 2-3i 243 4 — 942 449 13 13+13Z

Example 4: (Modulus and Argument) If z = 5 — 24, find |z| and arg(z).
Here, a = 5 and b = —2. Then we have,
o |z =1[5—2i| =52+ (-2)2=25+4=1+29
o arg(z) =tan"'(2) = tan~! (%) ~ —63.435°

Example 5: (Polar Representation) Express z =1 — ¢ in polar form.
Here, a =1 and b = —1. So,

e r=va2+02=/12+(-1)2=2

e O =tan" (%) =tan"!(5t) = tan"'(—1) = —45° or —Z.

e Polar form: z = r(cosf +isinf) = v2[cos(—Z) + sin(—Z)]

e Exponential form: z = re?? = \/2e="/4



10 Geometric Interpretation and Transformations

1. Addition of Complex Numbers:Vector addition on the plane.

o

5

4

Figure 2: Addition of Complex Numbers on the Plane

2. Multiplication of Complex numbers: Scaling (modulus) and rotation

(argument addition).

z,=1+4i

-3 -2

-1

Figure 3: Multiplication of two Complex Numbers
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3. Conjugation of a Complex Number: Reflection over the real axis.

Figure 4: Conjugation of a Complex Number

11 Conclusion

Extending beyond the realm of ordinary real numbers, complex numbers en-
able us to tackle problems that were once thought impossible to solve. It has
become an indispensable tool, connecting algebra and geometry, theory and ap-
plication, the abstract and the concrete. Their representation, manipulation,
and geometric interpretation enable students and practitioners to solve prob-
lems in mathematics, physics, engineering, and computer science. For students,
engaging with complex numbers through visual, interactive, and real-world ap-
plications ensures lasting understanding and appreciation.
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