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Independence, Basis, and Dimension

What does it mean for vectors to be independent? How does the idea of independence
help us describe subspaces like the nullspace?

Linear independence:
Suppose A is an m × n matrix with m < n (so Ax⃗ = b⃗ has more unknowns than

equations). A has at least one free variable, so there are nonzero solutions to Ax⃗ = 0. A
combination of the columns is zero, so the columns of this A are dependent.

We say vectors x⃗1, x⃗2, . . . , x⃗n are linearly independent (or just independent) if:

c1x⃗1 + c2x⃗2 + · · ·+ cnx⃗n = 0⃗

only when c1 = c2 = · · · = cn = 0.
When those vectors are the columns of A, the only solution to Ax⃗ = 0 is x⃗ = 0.
Two vectors are independent if they do not lie on the same line. Three vectors are

independent if they do not lie in the same plane.
Thinking of Ax⃗ as a linear combination of the column vectors of A, we see that the

column vectors of A are independent exactly when the nullspace of A contains only the
zero vector.

If the columns of A are independent then all columns are pivot columns, the rank of
A is n, and there are no free variables. If the columns of A are dependent then the rank
of A is less than n and there are free variables.

Spanning a space

Vectors v⃗1, v⃗2, . . . , v⃗k span a space when the space consists of all combinations of those
vectors. For example, the column vectors of A span the column space of A.

If vectors v⃗1, v⃗2, . . . , v⃗k span a space S, then S is the smallest space containing those
vectors.

Basis and Dimension

A basis for a vector space is a sequence of vectors v⃗1, v⃗2, . . . , v⃗d with two properties:

• v⃗1, v⃗2, . . . , v⃗d are independent.

• v⃗1, v⃗2, . . . , v⃗d span the vector space.

The basis of a space tells us everything we need to know about that space.
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Example: R3

One basis for R3 is: 10
0

 ,
01
0

 ,
00
1


These are independent because:

c1

10
0

+ c2

01
0

+ c3

00
1

 =

00
0

 ⇒ c1 = c2 = c3 = 0

These vectors span R3.
As discussed at the start of Lecture 10, the vectors:12

3

 ,
25
8

 ,
12
3


do not form a basis for R3 because these are the column vectors of a matrix that has two
identical rows. The three vectors are not linearly independent.

In general, n vectors in Rn form a basis if they are the column vectors of an invertible
matrix.

Linear Operators and Matrices

Introduction

In both linear algebra and quantum computing, a linear operator is a rule or transfor-
mation that maps one vector to another in a vector space while preserving vector addition
and scalar multiplication. In finite-dimensional vector spaces, linear operators are repre-
sented by matrices. Understanding linear operators is crucial in quantum computing,
as quantum gates are implemented through unitary linear operators.

Definition of a Linear Operator

Let V and W be vector spaces over a field F (usually R or C). A function T : V → W
is a linear operator if for all u⃗, v⃗ ∈ V and scalars c ∈ F , the following properties hold:

1. T (u⃗+ v⃗) = T (u⃗) + T (v⃗) (Additivity)

2. T (cv⃗) = cT (v⃗) (Homogeneity)

If V = W , then T is called a linear operator on V .
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Matrix Representation

Let T : F n → Fm be a linear operator. There exists an m × n matrix A such that for
any vector x⃗ ∈ F n,

T (x⃗) = Ax⃗

The entries of matrix A are determined by how T acts on the standard basis vectors
of F n. For example, if

e⃗1 =


1
0
...
0

 , e⃗2 =


0
1
...
0

 , . . . , e⃗n =


0
0
...
1


then the j-th column of A is T (e⃗j).

Example 1: Rotation Operator

Consider the linear operator R : R2 → R2 that rotates any vector by an angle θ. Its
matrix representation is:

R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
This operator is linear and preserves lengths (i.e., it’s orthogonal). In quantum com-

puting, rotations are used in gates like Rx(θ), Ry(θ), Rz(θ).

Example 2: Quantum Gate as Linear Operator

The Pauli-X (NOT) gate acts on a qubit and flips |0⟩ and |1⟩:

X =

[
0 1
1 0

]
, X |0⟩ = |1⟩ , X |1⟩ = |0⟩

This is a linear operator acting on a 2D complex Hilbert space, and satisfies:

X(α |0⟩+ β |1⟩) = α |1⟩+ β |0⟩

Key Properties of Linear Operators (Matrices)

Let A and B be linear operators (matrices), and v⃗, w⃗ be vectors.

• Linearity: A(c1v⃗ + c2w⃗) = c1Av⃗ + c2Aw⃗

• Matrix Composition: If A ∈ Rm×n, B ∈ Rn×p, then AB ∈ Rm×p

• Identity Operator: Inv⃗ = v⃗ for all v⃗ ∈ Rn

• Inverse Operator: If A is invertible, then A−1A = I

• Nullspace: N(A) = {x⃗ ∈ F n : Ax⃗ = 0⃗}

• Range (Image): Im(A) = {Ax⃗ : x⃗ ∈ F n}
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Change of Basis

Let A represent a linear operator in basis B, and let P be the change-of-basis matrix
from B to the standard basis. Then:

Astandard = PAP−1

This similarity transformation changes the matrix form of a linear operator while pre-
serving its eigenvalues.

Linear Operators in Quantum Computing

In quantum mechanics:

• States are vectors in a Hilbert space H

• Observables are represented by Hermitian linear operators

• Quantum gates are represented by unitary operators U such that U †U = I

• Measurement projects a state onto an eigenspace of an operator

Spectral Theorem

If A is a Hermitian linear operator on a finite-dimensional complex Hilbert space, then:

A =
∑
i

λivi

where λi are real eigenvalues and |vi⟩ are orthonormal eigenvectors.
This allows operators to be ”diagonalized” — crucial in quantum mechanics for un-

derstanding observables and measurements.

The Pauli Matrices

In quantum mechanics and quantum computing, the Pauli matrices are a set of three
2 × 2 complex Hermitian and unitary matrices that serve as the generators of the Lie
algebra su(2). They are central to describing the spin of spin-1

2
particles, single-qubit

operations, and the algebra of quantum gates.

Definition

The three Pauli matrices are denoted by σx, σy, and σz, or alternatively X, Y , and Z:

σx = X =

[
0 1
1 0

]
, σy = Y =

[
0 −i
i 0

]
, σz = Z =

[
1 0
0 −1

]
These matrices act on 2-dimensional complex vector spaces, such as qubit states

|0⟩ =
[
1
0

]
and |1⟩ =

[
0
1

]
.
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Properties

Each Pauli matrix has the following important properties:

• Hermitian: σ†
i = σi (all eigenvalues are real).

• Unitary: σ†
iσi = I (preserve norm of states).

• Traceless: Tr(σi) = 0.

• Determinant: det(σi) = −1.

• Eigenvalues: For each i, eigenvalues are ±1.

• Involutory: σ2
i = I.

Commutation and Anticommutation

The Pauli matrices obey specific algebraic rules:

• Commutator:
[σi, σj] = 2iϵijkσk

where ϵijk is the Levi-Civita symbol.

• Anticommutator:
{σi, σj} = 2δijI

where δij is the Kronecker delta.

Algebra Summary

σxσy = iσz,

σyσz = iσx,

σzσx = iσy,

σ2
x = σ2

y = σ2
z = I

Matrix Action on Basis States

X |0⟩ = |1⟩ , X |1⟩ = |0⟩
Y |0⟩ = i |1⟩ , Y |1⟩ = −i |0⟩
Z |0⟩ = |0⟩ , Z |1⟩ = − |1⟩

Pauli Vector and Operator Form

The Pauli vector is:
σ⃗ = (σx, σy, σz)

For any real 3D unit vector n⃗ = (nx, ny, nz), the operator:

n⃗ · σ⃗ = nxσx + nyσy + nzσz

is also Hermitian and unitary. It represents a rotation axis in Bloch sphere geometry and
defines a general qubit observable.
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Application in Quantum Computing

• The Pauli matrices are the basic single-qubit quantum gates.

• They generate more complex gates via exponentiation: e−iθσi represents a rotation.

• They serve as basis operators for decomposing any 2× 2 Hermitian operator.

• Measurement in the Pauli-Z basis is standard in most quantum circuits.

• Used in error detection and correction: Pauli group is foundational in stabilizer
codes.

Bloch Sphere Interpretation

Every single-qubit pure state can be represented as:

|ψ⟩ = cos

(
θ

2

)
|0⟩+ eiϕ sin

(
θ

2

)
|1⟩

The Pauli matrices correspond to rotations around the x, y, and z axes of the Bloch
sphere:

Ri(θ) = e−i θ
2
σi

Inner Products

In linear algebra and quantum computing, the inner product is a way to define angles,
lengths, and orthogonality in a vector space. It is essential in defining quantum state
overlaps, probabilities, and operator properties.

Definition

Let H be a complex vector space (Hilbert space). The inner product of two vectors
|ψ⟩ , |ϕ⟩ ∈ H is a complex number defined as:

⟨ϕ|ψ⟩

In coordinate form, if:

|ϕ⟩ =


ϕ1

ϕ2
...
ϕn

 , |ψ⟩ =


ψ1

ψ2
...
ψn


then:

⟨ϕ|ψ⟩ =
n∑

i=1

ϕ∗
iψi
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Properties of Inner Product

Let |ϕ⟩ , |ψ⟩ , |χ⟩ ∈ H, and a ∈ C. Then:

• Conjugate symmetry: ⟨ϕ|ψ⟩ = ⟨ψ|ϕ⟩

• Linearity in second argument: ⟨ϕ|aψ + χ⟩ = a ⟨ϕ|ψ⟩+ ⟨ϕ|χ⟩

• Positive-definite: ⟨ψ|ψ⟩ ≥ 0, and = 0 ⇐⇒ |ψ⟩ = 0

Norm and Orthogonality

The norm (length) of a vector is defined by:

∥ |ψ⟩ ∥ =
√

⟨ψ|ψ⟩

Two vectors are said to be orthogonal if:

⟨ϕ|ψ⟩ = 0

Quantum Mechanics Interpretation

In quantum mechanics, the inner product ⟨ϕ|ψ⟩ represents the **amplitude** of measur-
ing state |ψ⟩ in the state |ϕ⟩. The probability is:

P = | ⟨ϕ|ψ⟩ |2

The inner product determines interference, state distinguishability, and expectation
values.

—

Eigenvectors and Eigenvalues

In linear algebra, eigenvectors and eigenvalues describe how a linear transformation
(matrix/operator) acts on certain special vectors.

In quantum computing, **observable quantities**, **measurement outcomes**, and
**energy levels** are modeled by eigenvalues of Hermitian operators.

Definition

Let A be a linear operator (matrix) on vector space V . A non-zero vector v⃗ is an
eigenvector of A if:

Av⃗ = λv⃗

where λ ∈ C is the associated eigenvalue.

Finding Eigenvalues and Eigenvectors

To find eigenvalues, solve the characteristic equation:

det(A− λI) = 0

Each solution λ is an eigenvalue. To find the eigenvectors associated with λ, solve:

(A− λI)v⃗ = 0
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Quantum Measurement Interpretation

In quantum mechanics:

• Observables are Hermitian operators Ô.

• Measurement of Ô on state |ψ⟩ yields eigenvalue λi with probability:

P (λi) = | ⟨vi|ψ⟩ |2

• The state collapses to |vi⟩ after measurement.

Example

Let:

A =

[
2 0
0 3

]
Then the eigenvalues are λ = 2, 3 and the eigenvectors are:

v⃗1 =

[
1
0

]
, v⃗2 =

[
0
1

]
This matrix represents a quantum observable with two distinct measurement out-

comes.

Adjoints and Hermitian Operators

Adjoint of a Matrix or Operator

Let A be a complex matrix or linear operator. Its adjoint, denoted A†, is the conjugate
transpose:

A† = (A)T

For example, if:

A =

[
1 + i 2
−3i 4

]
, A† =

[
1− i 3i
2 4

]
The adjoint satisfies:

⟨ϕ|Aψ⟩ = ⟨A†ϕ|ψ⟩

for all |ϕ⟩ , |ψ⟩ in the Hilbert space.

Definition: Hermitian Operators

An operator H is Hermitian (or self-adjoint) if:

H† = H

In matrix form, this means H = H†, i.e., the matrix equals its own conjugate trans-
pose.
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Key Properties of Hermitian Operators

• All eigenvalues of a Hermitian operator are real.

• Eigenvectors corresponding to distinct eigenvalues are orthogonal.

• Hermitian operators are diagonalizable via a unitary transformation.

• They represent observable quantities in quantum mechanics.

Example:

Let

H =

[
2 i
−i 3

]
Then:

H† =

[
2 −i
i 3

]
= H ⇒ Hermitian

This matrix has real eigenvalues and can represent a quantum observable.

Tensor Products

Tensor products allow us to describe combined quantum systems. If a single qubit lives
in a 2D Hilbert space H2, then two qubits live in the 4D space H2 ⊗H2 = H4.

Tensor Product of Vectors

Let:

|a⟩ =
[
a1
a2

]
, |b⟩ =

[
b1
b2

]
Then their tensor product |a⟩ ⊗ |b⟩ is:

|a⟩ ⊗ |b⟩ =


a1b1
a1b2
a2b1
a2b2

 ∈ C4

This forms a basis for two-qubit states such as |00⟩ , |01⟩ , |10⟩ , |11⟩.

Tensor Product of Matrices

If A ∈ Cm×n, B ∈ Cp×q, then:
A⊗B ∈ Cmp×nq

The product is:

A⊗B =

a11B a12B · · ·
a21B a22B · · ·
...

...
. . .


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Example: Pauli Matrices on 2-Qubit Systems

Let X =

[
0 1
1 0

]
, then:

X ⊗ I =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


This applies an X gate to the first qubit and identity to the second.

Properties of Tensor Product

Let A,B,C,D be linear operators:

• (A⊗B)(C ⊗D) = (AC)⊗ (BD)

• (A⊗B)† = A† ⊗B†

• (A⊗B)T = AT ⊗BT

• det(A⊗B) = (detA)n(detB)m, for A ∈ Cm×m, B ∈ Cn×n

Tensor Product and Entanglement

The tensor product structure enables the existence of entangled states, which cannot
be written as a product of two separate qubit states.

Example:

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩)

This is an entangled Bell state.

Operator Functions

In linear algebra and quantum computing, we often use functions of operators —
especially functions like exponential, sine, or cosine — where the input is not a number,
but a matrix (or operator). These are called operator functions.

The most important of these is the matrix exponential, written as:

eA = I + A+
A2

2!
+
A3

3!
+ · · · =

∞∑
n=0

An

n!

Here: - A is a matrix or a linear operator, - I is the identity matrix, - This series works
exactly like the exponential function for real numbers, but using matrix multiplication
instead.

Why do we need this? Because in quantum mechanics, many operations on quan-
tum states involve exponentials of operators.

For example, in quantum mechanics, the evolution of a quantum state is governed by
the time evolution operator:

U(t) = e−iHt/h̄
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where: - H is the Hamiltonian (energy operator), - h̄ is the reduced Planck’s constant, -
U(t) is a unitary operator (preserves probability), - The quantum state at time t is:

|ψ(t)⟩ = U(t) |ψ(0)⟩ = e−iHt/h̄ |ψ(0)⟩

This means that the future state of the system is found by applying an operator
exponential to the initial state.

How do we calculate functions of operators? If the matrix A is diagonalizable,
i.e., we can write:

A = PDP−1

where D is a diagonal matrix and P is an invertible matrix of eigenvectors, then:

f(A) = Pf(D)P−1

and f(D) is computed by just applying f to the diagonal entries of D. This makes things
much easier.

Example: Rotation operator
Let

A =

[
0 −θ
θ 0

]
Then,

eA =

[
cos θ − sin θ
sin θ cos θ

]
which is a rotation matrix in 2D space.

In Quantum Computing: Operator exponentials are used to define quantum gates.
For example:

Rx(θ) = e−iθσx/2

is a rotation gate around the X-axis of the Bloch sphere. Here, σx is the Pauli-X matrix:

σx =

[
0 1
1 0

]
So, operator functions like exponentials are essential tools for time evolution, gate

construction, and solving Schrödinger’s equation.
—

The Commutator and Anti-Commutator

Operators in quantum mechanics don’t always behave the way normal numbers do. For
example, in arithmetic, ab = ba. But in quantum mechanics, applying operator A and
then operator B may not be the same as doing B and then A. This is captured using
the **commutator**.

The **commutator** of two operators A and B is defined as:

[A,B] = AB −BA

If [A,B] = 0, we say that A and B commute, meaning their order does not matter.
If [A,B] ̸= 0, the operators do not commute, and the order in which they are

applied affects the outcome.
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Why is this important? Because in quantum mechanics, non-commuting operators
correspond to physical quantities that cannot be precisely measured at the same time.
For example, the position x̂ and momentum p̂ operators satisfy:

[x̂, p̂] = ih̄

This leads directly to the Heisenberg uncertainty principle:

∆x ·∆p ≥ h̄

2

So the commutator tells us about fundamental limits of precision in measurements.
Commutators of Pauli matrices:
Let σx, σy, σz be the Pauli matrices. Then:

[σx, σy] = 2iσz, [σy, σz] = 2iσx, [σz, σx] = 2iσy

These relations are important in spin physics and quantum gates.
—
The **anti-commutator** of two operators is:

{A,B} = AB +BA

This is simply the sum of AB and BA. The anti-commutator is used in places where
symmetry is more important than difference.

For example, in quantum systems involving fermions (particles like electrons), the
creation and annihilation operators obey anti-commutation relations. Also, in quantum
error correction, anti-commutators help analyze logical operator structure.

Anti-commutators of Pauli matrices:

{σx, σx} = 2I, {σx, σy} = 0

This means: - Each Pauli matrix squared gives the identity (up to a factor), - Different
Pauli matrices anti-commute (their anti-commutator is zero).

- The commutator tells us if operators interfere with each other.
- The anti-commutator tells us about symmetries and conservation.
Understanding these helps us know whether two quantum operations (like gates or

measurements) can be done in any order, and whether they are fundamentally linked by
quantum uncertainty.

The Polar and Singular Value Decompositions

In linear algebra, decomposition techniques help us understand the structure of a matrix
by breaking it into simpler components. Two powerful decompositions are the Polar
Decomposition and the Singular Value Decomposition (SVD). Both are very im-
portant in quantum computing, quantum mechanics, and numerical analysis.
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Singular Value Decomposition (SVD)

Let A be any m× n complex matrix. Then the Singular Value Decomposition of A
is:

A = UΣV †

where:

• U is an m×m unitary matrix,

• V is an n× n unitary matrix,

• Σ is an m× n diagonal matrix with non-negative real numbers on the diagonal.

The diagonal entries of Σ are called the singular values of A, and they are always
non-negative real numbers, usually written as:

Σ =


σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σr


Here, σ1 ≥ σ2 ≥ · · · ≥ σr > 0, and r = rank(A).
Geometric Meaning: SVD tells us that any linear transformation A can be broken

into three parts: - Rotate using V , - Stretch along principal axes using Σ, - Rotate using
U .

In Quantum Computing: - SVD is used in quantum state tomography and matrix
product states. - It also plays a role in quantum algorithms like the HHL algorithm (for
solving linear systems).

Polar Decomposition

The Polar Decomposition of a square matrix A expresses A as the product of a unitary
matrix and a positive semi-definite matrix.

Let A be an n× n complex matrix. Then:

A = UP

where: - U is a unitary matrix (U †U = I), - P is a positive semi-definite Hermitian
matrix.

Alternatively, we can also write:

A = PU ′

where U ′ is another unitary matrix.
How to compute it: If A = UΣV † is the SVD of A, then:

P = V ΣV †, U = A(A†A)−1/2

Here, P contains the stretching part, and U handles the rotation and phase change.
Analogy: Polar decomposition is to matrices what writing a complex number z as

z = reiθ is in the complex plane: - r corresponds to P , - eiθ corresponds to U .
In Quantum Computing: - Used to decompose quantum channels and noisy oper-

ations into unitary and non-unitary parts. - Helps separate the ”pure quantum” part of
an operation from the ”lossy or decoherent” part.
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Summary

• SVD breaks a matrix into two rotations and a scaling.

• Polar decomposition separates a matrix into a unitary and a Hermitian positive
semi-definite part.

• Both decompositions are crucial in quantum computing for understanding opera-
tions, channels, and approximations.
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