Introduction to Neural Networks

A Neural Network (NN) is a computational model inspired by the structure and function of
the human brain's vast network of neurons. It is the core technology powering modern
Artificial Intelligence (AI) and Machine Learning (ML).

Concept

At its core, a neural network is a system of interconnected nodes, or neurons, that process
data by passing signals from one layer to the next. Each connection has a weight that

determines the influence of one neuron on another. The network "learns" to perform tasks
(like classification or prediction) by adjusting these weights based on the data it processes.

History

e 1940s-1960s (The Dawn): The concept began with the McCulloch-Pitts (MCP)
model (1943), which proposed the first mathematical model of a neuron. In 1957,
Frank Rosenblatt created the Perceptron, a single-layer neural network capable of
simple classification, sparking initial excitement.

o 1969-1980s (The "AI Winter"): Progress stalled after Marvin Minsky and Seymour
Papert showed that the Perceptron could not solve non-linearly separable problems
(like the XOR problem).

e 1980s-Present (The Revival): The invention of the backpropagation algorithm by
Paul Werbos (and later popularized by others) allowed for the efficient training of
multi-layer networks, solving the non-linearity problem. The surge in computational
power and massive datasets in the 21st century led to the Deep Learning revolution,
making NNs a dominant force in Al

Importance in AI and ML
Neural networks, particularly Deep Learning (NNs with many hidden layers), are crucial
because they can automatically discover intricate features and patterns within raw data (like

images, text, and sound) without being explicitly programmed for those features. This makes
them exceptionally powerful for complex tasks that traditional algorithms struggle with.

Structure of a Neural Network

A standard neural network is organized into a series of layers, which are composed of
individual neurons (or nodes).

1. Neurons (Nodes)

A neuron is the fundamental unit. It receives input signals from connected neurons, performs
a computation, and passes the result (output) to the next layer. The computation involves a
weighted sum of the inputs, followed by an activation function.

2. Layers

o Input Layer: Receives the raw data (e.g., pixel values of an image, words in a
sentence). It has one neuron for each feature in the input data.

o Hidden Layers: One or more layers between the input and output layers. These
layers perform the majority of the computation and feature extraction, transforming
the input data into abstract, useful representations. Networks with multiple hidden
layers are called Deep Neural Networks.

e Output Layer: Produces the final result of the network, such as a class prediction
(e.g., "cat" or "dog") or a numerical value (e.g., stock price prediction).

3. Weights (W)

A weight is a numerical value assigned to each connection between neurons. It determines
the strength and significance of the connection. During training, the network adjusts the
weights to minimize prediction errors, which is how the network "learns."

4. Bias (b)

The bias is an extra neuron in each layer (except the output) that always outputs a constant
value (usually 1.0) and has its own weight. The bias helps the network shift the output result
from the weighted sum, allowing the activation function to fire even when all inputs are zero,
which is essential for modeling complex non-linear relationships.

5. Activation Functions
The activation function is a non-linear mathematical function applied to the weighted sum of

inputs plus the bias. It introduces non-linearity into the model, enabling the network to learn
complex patterns and map inputs to outputs effectively.

Function Formula Purpose
ReLU (Rectified () = ©,) Most common in hidden layers;
Linear Unit) B ’ computationally simple.

{1} Maps output to a probabil.ity (Q to 1);
Sigmoid ()= 1+ N often used in binary classification output
{ } layers.
{{}} Used in the output 1 fi Iti-cl
Softmax { () = sed in the output layer for multi-class

{ } classification, ensuring outputs sum to 1.

Types of Neural Networks

1. Feedforward Neural Network (FNN) / Multi-Layer Perceptron (MLP)

e Concept: The simplest type of NN. Data moves in only one direction—forward—
from the input layer, through the hidden layers, and to the output layer. There are no
loops or cycles.

o Use Cases: Regression (predicting a number), simple classification tasks, function
approximation.

9
:
o o

©) O

Input Layer Hidden Layer Output Layer

Feedforward Neural Network (FNN)

Data flows in one direction: Input - Hidden — Output

2. Convolutional Neural Network (CNN)

o Concept: Specialized for processing grid-like data, such as images. CNNs use
convolutional layers to automatically and efficiently learn spatial hierarchies of
features (edges, textures, shapes) from the input data.

e Core Components: Convolutional layers, Pooling layers, Fully Connected layers.

e Use Cases: Image Recognition, Object Detection, And Video Analysis.

Convolutional Layers

aa s

Hi e Do,

h b Pooling Pooling (0.991)
ﬁﬁ ! w" § w % 9 a Flatten e Cat(07)

Input Image @ (riorz
(28x28x3) (002)

Fully Connected

Feature Learning Layers

Convollutionl Neural Network (CNN)

Specialized for Image Recognition

3. Recurrent Neural Network (RNN)

e Concept: Designed for processing sequential data (like time series or text). RNNs
have internal memory loops that allow information from previous steps in the
sequence to influence the processing of the current step.

o Limitation: Standard RNNs struggle with very long sequences due to the vanishing
gradient problem.

e Use Cases: Simple Natural Language Processing (NLP) tasks, Time Series

Prediction.
Xo K o X Xo Yo Yo Yt
X X, X, = = 9 Y
Wxh Why
Wxh Wih h Whh Why
tanh Whh
Recurent Hiden State
Input X, State h, State h, State h, State h,

Output Y,

Recurrent Neural Network (RNN)

Designed for Sequential Data (e..gl, Text, Time Series)

4. Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU)

o Concept: Variations of RNNs designed to solve the vanishing gradient problem. They
use complex gating mechanisms (input, forget, and output gates) to selectively
remember or forget information over long sequences.

e Use Cases: Machine Translation, Speech Recognition, and Text Generation.

LSTM Cell

@ Cell State (C) ,@
Input (X, X New Hiden
Hidden State e @ E\J e State
het) Input Gate (f) W'"L hy)

Input X, Cell 1 Cell2 ... Cell2 .. CellN Output Y,

Long Short-Lstm Memory (LSTM Network
Advanced RNN with Memory Gates for Long Sequences

GRU Cell

f o] 7
Input (X, | h, s : ’ [Why | New Hiden
5 u Candidate | *¥ Y
Hidden State ——#—>{ € }-——{ tanh } = —> State
he) Wah . Hidden State ‘ 3= n)
S = r
Input X, Cell 1 Statt2 ... Cell2 Cell N Output Y,

Gated Recurrent Unit (GRU) Network
Advanced RNN with Update & Reset Gates

5. Transformer Networks

o Concept: An architecture that completely replaces recurrence and convolutions with
an Attention Mechanism. Attention allows the model to weigh the importance of

different parts of the input sequence relative to a given element, making them highly
effective and parallelizable.

o Use Cases: Powering state-of-the-art Large Language Models (LLMs) like GPT-4

and BERT.
Input Embelding Output Embelding
— 1 —
I Encoder i’ﬁ"":';\ H Encoder ‘—
N\ Output Probabilties
+ o + ialliti e vl
X _— The (0.85)
Multi-Head N Multi-Head T
Encoder — | ‘Maer || o henton [cat010)
/."/ Encoder i { tog (0:03)
v // ‘Deader ¥
—— | /) Aentiol —————
| Feed Forward i——-'i-""' |- Feed Forward |-
sl L]
Add & Norm ‘ ‘ Add & Norm

Attention Mechanism for Parallel Sequence Processing

Working Principle: Training a Neural Network

Training a neural network is a cyclical process of forward propagation (making a prediction)
and backward propagation (learning from the error).

1. Forward Propagation (Making a Prediction)
1. Input: Data enters the Input Layer.

2. Weighted Sum: In each subsequent neuron, the inputs are multiplied by their
respective weights, summed up, and the bias is added:

= (L) F

[98)

Activation: The result Z is passed through the activation function f(Z)
4. Output: This output is passed to the next layer until the final prediction Y is made by
the Output Layer.

2. Backward Propagation (Learning from the Error)

1. Calculate Loss (Error): A Loss Function (e.g., Mean Squared Error or Cross-Entropy)
measures the difference between the network's prediction Y and the true value (Y).
This difference is called the Loss or Error L

L =Loss(Y,Y)

2. Gradient Calculation: The core of backpropagation is calculating the gradient
(derivative) of the loss function with respect to every single weight and bias in the
network. This tells us how much each parameter contributed to the error.

3. Optimization (Weight Update): An optimization algorithm, usually Gradient Descent,
uses these gradients to adjust the weights and biases. The update rule for a weight W
is:

new = Wold — n—

Where 1 is the learning rate (a small value that controls the step size of the
adjustment).

4. Iteration: This entire process is repeated thousands or millions of times over the

entire training dataset (epochs) until the loss is minimized, and the network can
accurately generalize to new, unseen data.

Applications of Neural Networks

Neural networks are the backbone of modern Al driving significant advancements across
various industries.

1. Image Recognition and Computer Vision

e Application: Identifying and classifying objects, scenes, and people in images and
videos.

e Technology: CNNs (Convolutional Neural Networks).

o Examples: Facial recognition systems, medical image analysis (detecting tumors),
quality control in manufacturing.

2. Natural Language Processing (NLP)

o Application: Enabling computers to understand, interpret, and generate human
language.

e Technology: RNNs, LSTMs, and Transformer Networks (for LLMs).

o Examples: Machine translation (Google Translate), spam detection, sentiment
analysis, conversational Al (chatbots like ChatGPT).

3. Autonomous Vehicles

o Application: Interpreting sensory data from cameras, LIDAR, and radar to make real-
time driving decisions.

e Technology: Primarily CNNs for visual processing and Deep Reinforcement
Learning for decision-making.

o Examples: Lane keeping, pedestrian detection, traffic sign recognition.
4. Financial Forecasting and Trading
o Application: Analyzing complex, non-linear market data to predict stock prices,

currency movements, and identify potential fraud.
e Technology: LSTMs and FNNs for time series prediction.

Neural Network Applications

1. Image Recognition & 2. Natural Language
& Computer Vision Processing (NLP)

3. Autonomous Vehicles 4, Financial Forecasing &
Fraud Detection
v *
1 l' §
ML
.] Q

M # o o o)
; [oo\
5 O o]

t s . ;
45 mph LSTM for Time Series FNN for Classification
ing A
Leaming Agent (FNN fressfication)

Examples and Case Studies
Case Study 1: ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

e Problem: Accurately classifying millions of high-resolution images across 1,000

different categories.

e NN Solution: In 2012, a CNN named AlexNet achieved a breakthrough, dramatically
dropping the classification error rate compared to traditional computer vision methods.
This single event is often cited as the spark that ignited the modern Deep Learning era.

o Impact: AlexNet and its successors (VGG, ResNet) established CNNs as the
definitive tool for computer vision, leading to the rapid adoption of Al in visual tasks

across countless industries.

Case Study: ImageNet Large Scale Visual
Recognition Challenge (ILSVRC)

The Breaktrirugh that Ignited Modern Deep Learning

1. The Challenge 2. The AxNet Solution 3. The Impact: Error
(2010s (2012) Rate Drops

IR
Boisn 5 SEO
LC H . ﬂ o v Tr(azd;gogal c)v (;Aslgxr;et :
‘- > - j: o EITOr, o Error
e aE35 «/ Accuracy

Millions of diverse images, L AT Revolutionized!

1000 categories. Huge error Architecture

rates for traditional computer
Vit Deep Learning

becomes the future of

Computer Vision.

llya Sutuskky
Geoffeny Hinton

Convollutionl Neural Network (CNN)

Specialized for Image Recognition

Case Study 2: Google's AlphaGo

e Problem: Mastering the ancient and highly complex game of Go, which has more
possible moves than atoms in the universe (too complex for traditional 'brute force'
Al).

e NN Solution: AlphaGo, developed by DeepMind, used two main neural networks:

1. Policy Network (CNN): A CNN trained to predict the next best move,
drastically reducing the search space.

2. Value Network (CNN): A CNN trained to evaluate the potential winner from a
position.

The system used a form of Reinforcement Learning to train these networks by
playing against itself millions of times.

o Impact: AlphaGo's victory over the world champion demonstrated that NNs could

solve problems previously thought to be uniquely human, proving the incredible
power of combining deep learning with reinforcement learning.

Case Study: Google’s AlphaGo

1. The Challenge 2. The AlphaGo 3. The Impact: Victory
(2010s) Solution (2016) over a Grandmaster
Value
s e ?°
il
po

winner

(=) AlphaGo N
g5 .
Deep Reinforrcement
‘ Learning ‘

‘ DeepMind Team

The ancient game Go. Alhagho wins 4-1!
More possible moves A historic moment
than atoms in the universe. @ n proving Al can master

Too complex for g § human-level intiution
traditional Lee Sedol Demis Habsis and strategy

"brute force" Al (Go World Champion) David Silver

y y 5. e

Reinfrecement Learning & Deep Nueral Networks:
Solving problems thought be uniquely human

