Random Forest and Support
Vector Machine (SVM)
Algorithms

By: Rosemary Mtape
Date: 27 September 2025

Introduction

Supervised learning is a type of machine learning where models are trained on labeled data to
make predictions or classifications. Two widely used supervised learning algorithms are Random
Forest (RF) and Support Vector Machine (SVM). Both algorithms are used extensively in
classification and regression tasks but differ in their approach, strengths, and limitations.

e Random Forest is an ensemble method based on decision trees.
e SVMis a powerful algorithm that finds the optimal hyperplane for classification tasks.

1. Random Forest (RF)
Random Forest, a widely used machine learning algorithm created by Leo Breiman and
Adele Cutler, combines the outputs of multiple decision trees to yield a single result. Its
appeal lies in its user-friendly design and versatility, making it effective for both
classification and regression tasks.

The algorithm excels at managing complex datasets and reducing the risk of overfitting,
making it a valuable asset for various predictive modeling applications in machine
learning.

A key feature of the Random Forest algorithm is its ability to handle datasets with both
continuous variables—typical in regression—and categorical variables—common in
classification. It generally outperforms other methods in both classification and
regression tasks.

Working Principle

Bootstrapping: Randomly select subsets of data with replacement.

Decision Tree Construction: Each subset is used to train a separate decision tree.
Feature Selection: At each node, a random subset of features is considered for splitting.
Voting/Averaging:

Classification: Majority vote across trees.

Regression: Average prediction across trees.

e oo oTw

Training Data Instance

|
[@ ® .
Lol ® @ % @ ® & o
NV ®PY XY ®@ ®

- Class A Class A Class B

i - — | —

Model _ Bagging (Voting Majority)
Testing |
Prediction Output

Class A

The image above depicts the Random Forest algorithm working, illustrating its key
components:

e Training Data Instances: Multiple decision trees are trained using various subsets of
the data.

e Decision Trees: Each tree makes individual predictions (Class A or Class B).

e Bagging (\Voting Majority): The model aggregates the predictions from all trees to
determine the final output.

e Prediction Output: The final classification is based on the majority vote from the
decision trees.

This diagram effectively conveys the process of how Random Forest combines multiple
models to improve prediction accuracy.

1.2 Advantages of Random Forest

e Handles High-Dimensional Data: Random Forest can process datasets with a large
number of features without significant performance degradation. This makes it suitable
for applications like genomics, text classification, and financial analysis.

e Reduces Overfitting Compared to a Single Decision Tree: By aggregating the results
of multiple decision trees (bagging), Random Forest mitigates the tendency of individual
trees to overfit the training data.

¢ Robust to Missing Values: Random Forest can handle missing data by using surrogate
splits or ignoring missing values in some trees, ensuring stable predictions even when
datasets are incomplete.

e Provides Feature Importance: Random Forest naturally evaluates feature importance
during training. This allows practitioners to identify the most influential variables, aiding
interpretation and dimensionality reduction.

Versatile for Classification and Regression: The algorithm can be applied to both
classification and regression problems, making it a flexible tool across diverse domains.

1.2 Limitations of Random Forest

Computationally Expensive with Many Trees: As the number of trees increases,
training time and memory usage grow significantly, which can be challenging for very
large datasets.

Less Interpretable than a Single Decision Tree: While a single decision tree is easy to
visualize, Random Forest aggregates many trees, making it difficult to interpret the exact
decision process.

May Struggle with Sparse Data: Random Forest may perform suboptimally on datasets
with extremely sparse features, such as text data represented by one-hot encoding, unless
feature selection or dimensionality reduction is applied.

Potential Bias with Imbalanced Datasets: Like many ensemble methods, Random
Forest can be biased toward the majority class if the dataset is heavily imbalanced,
requiring techniques such as class weighting or resampling.

1.3 Random Forest Best Practices

Key points to include:

Number of trees (n_estimators): More trees usually improve performance but increase
computation time. Start with 100-500 trees and adjust based on dataset size and
performance.

Feature selection (max_features): Randomly selecting a subset of features at each split
helps reduce correlation between trees and prevents overfitting.

Tree depth (max_depth): Limiting depth prevents overfitting, especially on small
datasets.

Handling missing values: RF can handle missing values, but it’s good practice to impute
or clean data for better performance.

Out-of-bag (OOB) error: Use OOB error as an internal validation metric instead of a
separate validation set.

Feature importance: RF provides feature importance scores, which help understand
which features contribute most to predictions.

1.4 Real-world Applications

% Customer churn prediction: Businesses can use random forests to predict which
customers are likely to churn (cancel their service) so that they can take steps to retain
them. For example, a telecom company might use a random forest model to identify

X/
°

X/
°

customers who are using their phone less frequently or who have a history of late
payments.

Fraud detection: Random forests can identify fraudulent transactions in real-time.
For instance, a bank might employ a random forest model to spot transactions made
from unusual locations or involving unusually large amounts of money.

Stock price prediction: It can predict future stock prices. However, it is important to
note that stock price prediction is a very difficult task, and no model is ever going to
be perfectly accurate.

Medical diagnosis: These can help doctors diagnose diseases. For example, a doctor
might use a random forest model to help them diagnose a patient with cancer.

Image recognition: It can recognize objects in images. For example, a self-driving
car might use a random forest model to identify pedestrians and other vehicles on the
road.

. Support Vector Machine (SVM)

Support Vector Machine (SVM) is a powerful supervised learning algorithm used for
both classification and regression tasks. It functions by identifying a hyperplane that
optimally separates data points belonging to different classes, making it a robust choice
for various applications in machine learning. Developed by Vladimir Vapnik and Alexey
Chervonenkis in the 1960s and gaining popularity in the 1990s, SVMs are particularly
effective in high-dimensional spaces, where they can efficiently classify complex
datasets.

The versatility of SVMs allows them to be applied in fields such as image recognition,
text classification, and bioinformatics. Their ability to provide clear margins of separation
between classes makes them a preferred choice when accuracy is critical.

2.2. Types of SVM

a.

Linear SVM:

Used when the data is linearly separable. It finds a straight line (or hyperplane) to
separate the classes.

b.

Non-Linear SVM:

Used for data that is not linearly separable. It employs kernel functions to transform the
data into higher dimensions for effective separation.
Kernel Types:

= Polynomial Kernel: Captures interactions between features. Useful for non-linear
relationships.

= Radial Basis Function (RBF) Kernel: Effective in capturing complex relationships
and is widely used due to its flexibility.

= Sigmoid Kernel: Mimics a neural network activation function. Less commonly
used but can be useful in specific scenarios.

c. Support Vector Regression (SVR):

An extension of SVM for regression tasks, SVR aims to fit the best line within a certain
margin of tolerance.

2.3 Working Principle

= Hyperplane: SVM identifies the optimal hyperplane that maximizes the margin
between two classes, establishing the best decision boundary.

= Support Vectors: These are the data points closest to the hyperplane, which play a
crucial role in defining the decision boundary.

= Kernels: To handle non-linear data, SVM employs kernel functions (such as
linear, polynomial, and radial basis function) to map the data into higher
dimensions, facilitating effective separation.

Y
=1L T
. Ciptiral byparalang
Slack vanabic o :
® r l .f“.,E.upD..'.-.P-::.:r..
Cluss2 @ * e
a2 L A
® A
. o A
RCE Y
A Glase 1
A

2.4 Advantages of Support Vector Machine (SVM)

= High-Dimensional Performance: SVM performs exceptionally well in high-
dimensional spaces, making it ideal for applications like image classification and gene
expression analysis.

Nonlinear Capability: By utilizing kernel functions such as RBF and polynomial, SVM
effectively addresses nonlinear relationships within the data.

Outlier Resilience: The soft margin feature enables SVM to disregard outliers,
enhancing its robustness in tasks like spam detection and anomaly detection.

Binary and Multiclass Support: SVM is versatile, working efficiently for both binary
and multiclass classification tasks, which is particularly useful in text classification
applications.

Memory Efficiency: SVM is memory efficient as it primarily focuses on support vectors,
unlike many other algorithms that consider all data points.

2.5 Disadvantages of Support Vector Machine (SVM)

Slow Training: Training an SVM can be time-consuming with large datasets, which may
hinder its performance in data mining tasks.

Parameter Tuning Difficulty: Choosing the appropriate kernel and fine-tuning
parameters like C requires careful consideration, which can complicate the
implementation of SVM.

Noise Sensitivity: SVM can struggle with noisy datasets and overlapping classes, which
may limit its effectiveness in real-world applications.

Limited Interpretability: The complexity of the hyperplane in higher dimensions makes
SVM less interpretable compared to other machine learning models.

Feature Scaling Sensitivity: Proper feature scaling is crucial; without it, SVM models
may perform poorly.

2.6 Best Practices for SVMs

To achieve optimal performance with SVMs, it is important to follow these best practices:

Use kernel functions wisely: Experiment with different kernels to find the one best
suited for your problem. Consider computational costs when using complex kernels.
Choose appropriate C and gamma values: These hyperparameters control the trade-off
between training accuracy and generalization. Grid search or random search is
recommended for finding the best combination.

Use cross-validation: Evaluate performance on holdout data to prevent overfitting and
ensure generalization.

Handle class imbalance: Imbalanced datasets can bias SVM performance. Use
techniques like oversampling the minority class or weighted SVMs.

Regularization: Adding regularization terms can improve generalization and prevent
overfitting.

2.7 Real-World Applications of Support Vector Machines (SVM)

= Image Classification: SVMs are used to categorize images based on trained features,
successfully identifying objects, faces, and medical conditions in images.

= Text Classification: In text classification, SVMs categorize documents, such as filtering
emails into spam and non-spam, based on learned patterns from labeled datasets.

» Fraud Detection: SVMs identify fraudulent transactions by analyzing patterns in
historical transaction data, flagging potentially suspicious activities in real time.

= Recommender Systems: SVMs recommend items to users by analyzing user preferences
and item attributes, personalizing suggestions based on previous interactions.

= Bioinformatics: SVMs classify cancer types from gene expression data, aiding in
diagnosis and treatment decisions.

= Handwriting Recognition: SVMs are employed to interpret handwritten text, converting
it into digital formats for various applications.

3. Comparison between Random Forest and SVM

Feature

Random Forest

SVM

Type

Ensemble of decision trees

Linear/non-linear classifier

Handles non-linearity

Yes, naturally

Yes, using kernels

Interpretability

Moderate

Low

Performance on noisy data

Good

Can be sensitive

Computational cost

Medium to High

High, especially on large
datasets

Best Use Case

Large datasets, feature
importance

High-dimensional,
small/medium datasets

4. Conclusion

Random Forest and SVM are powerful supervised learning algorithms with unique strengths and
weaknesses. RF is ideal for handling large datasets with complex relationships and provides
interpretability through feature importance. SVM excels in high-dimensional data and tasks
requiring precise classification boundaries. Choosing the right algorithm depends on dataset size,
dimensionality, and problem requirements.

