Task 12 — Dimensionality Reduction in Unsupervised
Learning

1. Introduction

In modern data-driven environments, organizations and researchers are constantly dealing
with massive datasets containing hundreds or even thousands of features. While more data
often means more information, it also brings complexity. Dimensionality Reduction is a
fundamental concept in machine learning and data science that helps handle this complexity
by reducing the number of variables under consideration while maintaining the core essence
of the dataset.

Definition
Dimensionality reduction is the process of transforming high-dimensional data into a lower-
dimensional representation that preserves the most important relationships or structures.

In simple terms, it converts data with many variables into a smaller set of variables that still
convey nearly the same information.

For example, if we have a dataset with 100 features describing customer behavior,
dimensionality reduction might help us represent the same information with just 2 or 3
meaningful features without losing much insight.

Importance

1. Simplifies Data: Reducing dimensions makes complex data easier to interpret and
visualize.

2. Improves Performance: Fewer features reduce computational time for algorithms.

3. Avoids the Curse of Dimensionality: In high-dimensional spaces, data points become
sparse and distances lose meaning. Dimensionality reduction mitigates this problem.

4. Improves Visualization: It allows us to visualize high-dimensional data in 2D or 3D
plots.

5. Enhances Learning Efficiency: By eliminating redundant features, models can
generalize better and overfit less.

Role in Unsupervised Learning

In unsupervised learning, where data has no labels or predefined outputs, dimensionality
reduction is vital for:

e Revealing hidden patterns or clusters in the data.
e Preprocessing data before applying clustering algorithms like K-Means or DBSCAN.

e Understanding the internal structure of data by reducing it to a form that can be
easily interpreted.

For instance, before performing clustering on a large customer dataset, applying PCA can
reduce noise and make cluster boundaries clearer.



2. Goals and Importance

The main objective of dimensionality reduction is simplifying the data without losing key
information. It aims to project data into a lower-dimensional subspace where the most
relevant patterns are preserved.

Key Goals

1. Feature Extraction: Generate new meaningful features that capture the most
variance in the data.

2. Noise Reduction: Remove uninformative or irrelevant features that may add
confusion or noise.

3. Efficient Storage and Computation: Reducing the number of dimensions saves
memory and computational cost.

4. Visualization: Transforming complex datasets into 2D or 3D helps analysts visually
detect patterns or anomalies.

5. Prevent Overfitting: Models trained with fewer relevant features tend to generalize
better on unseen data.

Why It Matters
o Data Simplification: Simplifies model interpretation and communication of results.

¢ Information Preservation: Keeps most of the meaningful variance even after feature
reduction.

e Improved Algorithm Efficiency: Many machine learning algorithms perform better
with reduced input size.

3. The Curse of Dimensionality

As the number of features grows, the data becomes increasingly sparse in the feature space.
This is known as the curse of dimensionality. For example, in 2D, you can visualize points
easily; in 100D, the space is almost empty, making it difficult to compute meaningful
distances or similarities.

Dimensionality reduction combats this issue by projecting the data onto fewer axes that
capture the majority of its variance or structure.

4. Common Algorithms

Below are the most widely used dimensionality reduction techniques, both linear and non-
linear.

4.1 Principal Component Analysis (PCA)

Nature: Linear technique
Goal: Maximize variance captured in fewer dimensions.



PCA identifies principal components — directions in which the variance of the data is
highest. It transforms correlated variables into uncorrelated variables known as principal
components.

Steps:
1. Standardize the Data — Center data by subtracting the mean.
2. Compute Covariance Matrix (C) — Measures how variables vary with one another.

3. Calculate Eigenvalues and Eigenvectors — Determine directions (eigenvectors) and
magnitude (eigenvalues) of maximum variance.

4. Sort Components — Rank components by their eigenvalues.
5. Project Data — Keep top k components to form the new reduced dataset.

Mathematical Insight:
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Where Cis the covariance matrix, and eigenvectors of Crepresent the principal directions of
maximum variance.

Example:
If we have a dataset of handwritten digits (like MNIST), PCA can reduce 784 pixel features to
just 50, preserving 95% of the information.

Advantages:
e Fast and effective for linear data
e Easy toimplement and interpret
Disadvantages:
e Loses interpretability of original features
e Not suitable for highly non-linear data
4.2 t-Distributed Stochastic Neighbor Embedding (t-SNE)

Nature: Non-linear, mainly for visualization.

t-SNE converts high-dimensional distances into probabilities representing similarities
between data points. It then tries to ensure that similar points in high-dimensional space
remain close in lower dimensions.

Intuition:
t-SNE preserves local structure, meaning if two points were neighbors in high-dimensional
space, they remain close after reduction.

Applications:

e Visualizing word embeddings (NLP)



e Exploring high-dimensional biological datasets
o Image feature exploration
Advantages:
e Produces visually clear clusters
e Captures complex non-linear relationships
Disadvantages:
e Computationally expensive

o Difficult to scale to millions of data points

4.3 Autoencoders
Nature: Neural network-based, non-linear.

An Autoencoder is a type of artificial neural network trained to copy its input to its output
through a bottleneck layer that represents the reduced dimension.

Architecture:
¢ Encoder: Compresses input into a smaller latent space.
¢ Decoder: Reconstructs the input from that latent space.
Equation:

h = f(Wx +b)

where his the encoded representation (latent features).

Applications:

e Image denoising and compression

e Anomaly detection

e Feature learning for deep models
Advantages:

e Can capture non-linear relationships

o  Works well with large and complex datasets
Disadvantages:

e Requires more computational resources

o Needs large amounts of data for training



4.4 Linear Discriminant Analysis (LDA)

Although mainly used for supervised learning, LDA can also function in semi-supervised
settings. It aims to maximize separability between classes.

Goal:
Project data onto a subspace that best separates classes.

Mathematical Intuition:
LDA maximizes the ratio of between-class variance to within-class variance:
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Applications:

e Face recognition

e Document classification
Advantages:

e Excellent for class discrimination

e Simple to implement
Disadvantages:

e Requires class labels

e Assumes normally distributed data

4.5 Uniform Manifold Approximation and Projection (UMAP)
Nature: Non-linear, manifold learning.

UMAP is a recent advancement that preserves both local and global structures of data,
unlike t-SNE, which focuses mainly on local patterns.

Key Idea:
It assumes data lies on a manifold and attempts to maintain the structure of that manifold in
lower dimensions.

Advantages:

e Faster and more scalable than t-SNE

e Excellent visualization quality

e Captures both global and local structures
Applications:

e Genomics

e NLP embeddings

e Image feature visualization



6. Visualizing the Process (Diagram Descriptions)

PCA (Linear)

tSNE g = UMAP
(Curved Manifolds) Autoectoders™ (Topological Graph)

MAPPING HIGH-DIMENSIOMNL COMPLEXITY INTO
HUMAN-UNDERSTABLE VISUALIZATIONS

Imagine a 3D sphere of data points.
e PCAslices through it along directions of greatest variance (straight lines).

e t-SNE compresses curved manifolds into a 2D cluster view.

¢ Autoencoders learn curved, complex compression surfaces through neural networks.

¢ UMAP builds a high-dimensional graph of relationships and tries to recreate it in 2D.

These methods all seek to map high-dimensional complexity into human-understandable

visualizations.

6. Mathematical Understanding of PCA (Expanded)
Let’s consider dataset X = [xq, x5, ..., X, ]with n observations and d features.
1. Center the data:
X' = X — p ,where uis the mean vector.

2. Covariance matrix:

C = ! XTx’'
T n-—1
3. Eigen decomposition:
Cv = Av ,where vis the eigenvector and Athe eigenvalue.

4. Select principal components:
Choose top k eigenvectors corresponding to the largest eigenvalues.

5. Transform data:

Y = X'W, where Wis the matrix of top k eigenvectors.



7. Applications and Use Cases

Domain Use Case Benefit
Image Image compression using |[Reduces image storage while retaining key
Processing PCA features

Identifies top contributing genes to disease

Bioinformatics |Gene expression analysis
patterns

Simplifies correlated stock features for risk

Finance Stock feature reduction .
modeling

Word embeddings

NLP ) o Visualizes relationships between words
visualization
Healthcare Disease pattern detection ||Helps cluster patients based on symptoms
. . Identifies behavioral clusters in large
Marketing Customer segmentation

customer data

8. Implementation Example (Python)
from sklearn.decomposition import PCA
from sklearn.datasets import load_iris
import matplotlib.pyplot as plt

data = load_iris()

X = data.data

y = data.target

# Apply PCA

pca = PCA(n_components=2)

X_reduced = pca.fit_transform(X)
plt.scatter(X_reduced(:,0], X_reduced[:,1], c=y, cmap='viridis')
plt.title("PCA Visualization of Iris Dataset")
plt.xlabel("Principal Component 1")
plt.ylabel("Principal Component 2")
plt.show()

This simple example projects the 4-dimensional Iris dataset into 2D, revealing clear clusters
corresponding to flower species.



9. Advantages and Limitations

Advantages

e Reduces storage and computation time.

e Enhances visualization and interpretability.

¢ Removes redundancy and noise.

e Often improves performance of downstream models.

Limitations

¢ Some information is inevitably lost.

e Linear techniques (like PCA) may fail on non-linear data.

¢ Non-linear methods (like t-SNE) are computationally expensive.

¢ Interpretation of new features is not always intuitive.

10. Comparison Table

Algorithm Type Complexity | Interpretability | Scalability | Visualization | Ideal Use
Case

PCA Linear Low High Excellent Moderate Quick
analysis,
compression

t-SNE Non-linear High Medium Low Excellent 2D
visualization

Autoencoder | Neural network | High Low Medium Good Deep
feature
learning

LDA Linear (Semi- Medium High Medium Moderate Class

supervised) separation

UMAP Non-linear Medium Medium High Excellent Visual

exploration

11. Real-World Examples

e Google Photos: Uses Autoencoders and PCA to compress and cluster similar photos.

e Genomic Research: PCA helps in identifying genetic variations.

o Stock Market Analysis: Reduces hundreds of correlated stock indicators into key risk
factors.

e Spotify: Uses t-SNE and UMAP to cluster similar songs based on sound embeddings.




12. Conclusion

Dimensionality Reduction stands as a cornerstone technique in unsupervised learning and
data analysis. It enables:

o Simplified yet powerful representation of complex data,
¢ Enhanced visualization and pattern discovery,

¢ Reduced computational effort,

e And improved model performance.

Among the many techniques available, PCA remains the foundation for linear methods,
while t-SNE, UMAP, and Autoencoders dominate non-linear dimensionality reduction and
visualization tasks.

In the age of big data and Al, the ability to reduce data dimensions without losing essential
information is invaluable. It not only makes analytics efficient but also empowers us to see
the hidden structure of the data — the bridge between complexity and comprehension.



