The objective of this dataset is to analyze supermarket sales performance across different cities and branches in California by examining
customer demographics, product categories, pricing, discounts, and sales values. It aims to identify purchasing patterns based on
customer type and gender, and to evaluate how discounts and taxes influence net and total sales. The dataset also helps assess product
category performance and customer satisfaction through ratings. Overall, it supports data-driven decision-making to improve sales
strategies, inventory management, and customer experience in supermarkets.

1. Data Understanding & Cleaning

o Describe the dataset and variables
o Handle missing or inconsistent values (if any)

2. Exploratory Data Analysis (EDA)

o |dentify key factors affecting sales
o Analyze relationship between price, quantity, discount, and sales

3. Model Development

o Define independent (x) and dependent (y) variables
o Perform train-test split (70-30 or 80-20)
o Implement:

= Simple Linear Regression
= Multiple Linear Regression

o Calculate and explain:

= Mean Absolute Error (MAE)

= Mean Squared Error (MSE)

= Root Mean Squared Error (RMSE)
= R2 Score

4. Interpretation & Insights

o Interpret regression coefficients
o |dentify which variables most impact sales
o Discuss overfiting vs underfiting

For a free dataset, please send an email to info@macroedtech.com

v This work is done by Ritika, Data Analyst, MacroEdtech.

#Upload file in Google Colab
from google.colab import files
uploaded = files.upload()

#Import liberaries

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression

from sklearn.preprocessing import LabelEncoder

from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score

Load the data
df = pd.read_excel(list(uploaded.keys())[@])
df.head(10)

Invoice_ID
INV200000
INV200001
INV200002
INV200003
INV200004
INV200005

INV200006

INV200007

INV200008

Branch
West-3
West-1
West-3
West-3
West-1
West-1

West-3

West-2

West-3

City Customer_Type

San Diego

Sacramento

San Diego

Oakland

Anaheim

Fresno

Irvine

Los

Angeles

Oakland

Step 1: Data Understanding & Cleaning

#Data information
df.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 5000 entries, © to 4999
Data columns (total 14 columns):

#

ONOUV A WNE O 1
1

O

10
11
12
13

dtypes: float64(7), int64(1), object(6)

Column
Invoice_I
Branch
City

D

Customer_Type

Gender
Product_C
Unit_Pric
Quantity
Discount
Rating

ategory
e

Discount_Amount

Net_Sales

Tax_7_25_

Total_Sal

memory usage:

percent
es

547.0+ KB

Non-Null Count

5000
5000

non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null

#check missing values in each column
df.isnull().sum()

Invoice_ID
Branch

City

Customer_Type 0

Gender

Product_Category 0

Unit_Price
Quantity
Discount

Rating

Discount_Amount 0

Net_Sales

Tax_7_25_percent 0

Total_Sales

dtype: int64

Normal
Normal
Member
Member
Member
Member

Member

Normal

Member

Dtype

float64d
int64

float64d
float64
float64
float64d
float64d
float64

Gender
Female
Female
Female

Male

Male
Female

Female

Male

Male

Product_Category
Clothing

Food

Food

Clothing
Electronics

Food

Clothing

Home Appliances

Cosmetics

Unit_Price
319.91
569.62

48.57
361.92
318.27
312.16

524.53

127.30

Quantity Discount Rating Discount_Amou

4

7

15

0.26
0.24
0.34
0.18
0.19
0.09

0.13

0.01

0.24

4.5
1.8
6.1
4.3
2.8
6.4

4.3

25

7.3

332.
956.

99.
977.
362.
196.

204.

16.

14.

#Statistics analysis
df.describe().round(4)

Unit_Price Quantity Discount Rating Discount_Amount Net_Sales Tax_7_25_percent Total_Sales

count 5000.0000 5000.0000 5000.0000 5000.0000 5000.0000 5000.0000 5000.0000 5000.0000
mean 308.7607 10.0684 0.1779 5.4486 551.1243 2537.9263 183.9997 2721.9260
std 170.6289 5.4222 0.1004 2.6018 603.3678 2140.3556 155.1759 2295.5314

min 5.1500 1.0000 0.0000 1.0000 0.0000 3.5400 0.2600 3.8000

25% 165.2175 5.0000 0.0900 3.2000 106.3700 805.2975 58.3850 863.6825
50% 311.5550 10.0000 0.1800 5.5000 340.6800 1966.7950 142.5950 2109.3900
75% 452.8750 15.0000 0.2600 7.7000 785.4375 3766.1075 273.0425 4039.1500
max 599.9400 19.0000 0.3500 10.0000 3820.3100 10676.8800 774.0700 11450.9500

#Remove Duplicates
df.drop_duplicates(inplace= True)

#Fill missing numeric values with the mean; since no nulls exist (verified earlier in cell 9), this step has no impact and is f
df.fillna(df.mean(numeric_only= True), inplace= True)

Step 2: Exploratory Data Analysis (EDA)

#Relationship between Quanity and total Sales
sns.scatterplot(x= 'Quantity', y= 'Total_Sales', data= df)
plt.title("Quantity vs Total Sales")

plt.show()
Quantity vs Total Sales
12000
[] -
.
£ 8 &
10000 s 228
s i
Piifgs
[E = E s E
E i E E g]
& 6000 g g :
i s E E o
: HIIHH]
° e 18 8 € s 2283
4000 81 g H g 8 E e
i é s § E ® E % 3 g
: : E '3 g H : s
20001 E 118 EEs:i¢: H
g g g § £ 8 g g E g : i :
E 8z B &8 E g E = =g 8
0-?5555522;!2 RN
2.5 5.0 75 100 125 150 175

Quantity

#Correlation Heatmap (Numerical Features) (from reference file)

plt.figure(figsize=(8, 6))
sns.heatmap(df.select_dtypes(include= np.number).corr(), annot=True, cmap='coolwarm')
plt.show()

Unit_Price -0.021 0.018 0.02

Quantity 0.0011 0.02

Discount -0.0011 il 0.0044

Rating f 0.02 0.0044 0.019 0.026

Discount_Amount -

Net_Sales - 0.65 0.63

Tax_7_25 percent- 0.65 0.63

Total_Sales - 0.65

2
o
(i

i i i
= wi
4 & E g E (4 = B
g2 7| = =]
o = =} o " o w
.“'_"l g t..mi E E d—ll g =!
5 ¢ 0 S 8 4 £
£ N F
o hl
2 x
a us

Heatmap explaination:
1. Total_Sales correlations

Strong positive correlation with
Net_Sales (1.0) - makes sense, Total_Sales includes Net_Sales
Tax_7_25_percent (1.0) - tax is directly proportional to sales
Quantity (~@.63) » selling more units increases sales
Unit_Price (~0.65) - expensive products increase sales

Weak negative correlation with:
Discount (~-0.14) - bigger discounts slightly reduce revenue per invoice

2. Other strong correlations

Net_Sales, Tax, and Total_Sales are basically very strongly correlated (1.0)
Discount_Amount correlates moderately with Quantity and Unit_Price (0.48-0.49)

3. Low impact variables

Rating has almost no correlation with Total_Sales (~0.026) —

customer rating doesn’t affect invoice amount directly

Step 3: Model Development

#Define independent (X) and dependent (y) variables
x = df[["Unit_Price", "Quantity", "Discount"]]
y = df["Total_Sales"]

1.0

- 086

- 0.4

#Perform train-test split (70-30 or 80-20)
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size= 0.20, random_state= 42)

#Implement: Simple Linear Regression
model = LinearRegression() #build linear regression model
model.fit(x_train, y_train)

v LinearRegression I 7 |

LinearRegression()

y_pred = model.predict(x_test) #make predction

#Implement: Multiple Linear Regression
multi_model = LinearRegression()
multi_model.fit(x_train, y_train)

| v LinearRegression !

LinearRegression()

y_multi_pred= multi_model.predict(x_test) #make prediction

#Calculate and explain for Simple Linear Regression Metrics: Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squ
#Evaluate Model Performance

print("Simple Linear Regression")

print("MAE: ", mean_absolute_error(y_test, y_pred))

print("MSE: ", mean_squared_error(y_test, y_pred))

print("RMSE: ", np.sqrt(mean_squared_error(y_test, y_pred)))

print("R2 Score: ", r2_score(y_test, y_pred))

Simple Linear Regression

MAE: 659.7072617630063

MSE: 794603.8984905048

RMSE: 891.4055746350842

R2 Score: 0.8414514391424115

#Calculate and explain for Multiple Linear Regression Metrics: Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean ¢
print("Multiple Linear Regression")

print("MAE: ", mean_absolute_error(y_test, y_multi_pred))

print("MSE: ", mean_squared_error(y_test, y_multi_pred))

print("RMSE: ", np.sqrt(mean_squared_error(y_test, y_multi_pred)))

print("R2 Score: ", r2_score(y_test, y_multi_pred))

Multiple Linear Regression
MAE: 659.7072617630063

MSE: 794603.8984905048

RMSE: 891.4055746350842

R2 Score: ©.8414514391424115

As it is Multiple Linear Regression because X_train contains more than one independent variable, so we will consider only Multiple linear

regression.
Step 4: Interpretation & Insights

#Interpret regression coefficients
coeff_df= pd.DataFrame(
{
"Feature": x.columns,
"Coefficient": multi_model.coef_

)

coeff_df.sort_values(by= "Coefficient", ascending= False)

Feature Coefficient
1 Quantity 274.254986
0 Unit_Price 8.984172

2 Discount -3495.614284

Interpretation Example
Positive coefficient — increases sales

Negative coefficient — decreases sales

Quantity has most impact on total sales.

#Actual and predicted plot
plt.scatter(y_test, y_multi_pred)
plt.title("Actual vs Predicted")
plt.xlabel("Actual")
plt.ylabel("Predicted")
plt.show()

Actual vs Predicted

8000 ®

6000 -

4000 A

Predicted

2000 -

—2000 4

T T T T T
0 2000 4000 6000 8000 10000 12000
Actual

This plot explains that how close predictions are to real sales. Tells if the model is working fine.

overfitting vs underfitting:

Overfitting happens when the model learns too much from the training data, including noise and outliers. It performs very well on training
data but poorly on test data. Overfitting happens due to:

¢ Model too complex
¢ Too many features
¢ Very little data

¢ No regularization

¢ High variance

Underfitting happens when the model fails to learn important patterns. It performs poorly on both training and testing data. Underfitting
happens due to:

¢ Model is too simple

¢ Very high regularization

¢ Features are weak or missing
¢ Not enough training

¢ High bias

Price

L
8 8
a a
® \
Size Size Size
8, +0,x B, +0,x+8,% 0,+0,%+0,%2+0,%+0,x*
High Bias Low Bias, Low Variance High Variance
(Underfitting) (Goodfitting) (Overfitting)

~.image.png

